

European Research Council

Established by the European Commission

Higgs properties with the ATLAS detector Latest-and-greatest results with full Run-2 data

Mohamed Aly obo the ATLAS collaboration, 27.08.2024

ICNFP 2024, Crete

Width

$$\Gamma_{H}^{\mathrm{SM}} pprox 4 \,\mathrm{MeV}$$

Sensitive to un-observed massive particles

CP structure

CP-violation in SM is not enough to explain matter-antimatter asymmetry

- Higgs sector in SM is CP-conserving
- CP-violation in Higgs sector hiding?

Mohamed Aly

 $m_H^2 = -2\mu^2$

Fundamental (free) parameter of the SM

- Only depends on $V(\phi)$ parameters
 - Linked to stability of universe

Width

$$\Gamma_{H}^{\mathrm{SM}} pprox 4 \,\mathrm{MeV}$$

Sensitive to un-observed massive particles

See talk by <u>Y. Zhu</u>

CP structure

CP-violation in SM is not enough to explain matter-antimatter asymmetry

- Higgs sector in SM is CP-conserving
- CP-violation in Higgs sector hiding?

Mohamed Aly

Higgs mass Probed with $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^{\star} \rightarrow 4\ell$

 $H \rightarrow \gamma \gamma$: <u>Phys. Lett B 847 (2023) 138315</u> – <u>aux material</u>

 $H \to ZZ^{\star}$: Phys. Lett. B 843 (2023) 137880

Choices to be made The Higgs mass: decay channels

Higgs mass = invariant mass of decay products

$H \rightarrow ZZ/\gamma\gamma$

- Manageable backgrounds
- *Easy* reconstruction
- High resolution

Mass with $H \rightarrow \gamma \gamma$ Full Run-2 (140 fb⁻¹): setup

<u>Phys. Lett B 847 (2023) 138315 — aux material</u>

Categorisation

- Regions based on photon kinematics with **improved** γ **reconstruction**
 - Optimised to reduce Higgs mass uncertainty
 - Improved mass precision by 6% w.r.t partial Run-2

Modelling

- Signal modelled with **double-sided Crystal Ball**
- Background modelled empirically with **exponentials and polynomials**
- Better γ energy scale: improved detector model w.r.t partial Run-2

Mass with $H \rightarrow \gamma \gamma$ Full Run-2 (140 fb⁻¹): result

<u>Phys. Lett B 847 (2023) 138315</u> — <u>aux material</u>

Precision x3 better than partial Run-2

ICNFP 2024

Fitting

• Simultaneous maximum-likelihood fit in all categories

Source	Impact []	MeV]
Photon energy scale	83	x4 smaller than
$Z \rightarrow e^+e^-$ calibration	59	partial Dup 0
$E_{\rm T}$ -dependent electron energy scale	44	partial Run-2
$e^{\pm} \rightarrow \gamma$ extrapolation	30	
Conversion modelling	24	
Signal-background interference	26	
Resolution	15	
Background model	14	
Selection of the diphoton production vertex	5	
Signal model	1	
Total	90	

Run 1 + Run 2:

 $m_H = 125.22 \pm 0.14 \,\text{GeV} \left[\pm 0.11 \,(\text{stat.}) \pm 0.09 \,(\text{syst.})\right]$

Mass with $H \rightarrow ZZ^* \rightarrow 4\ell$

Full Run-2 (140 fb⁻¹): setup

Phys. Lett. B 843 (2023) 137880

Categorisation

- 4 channels split by leading/sub-leading lepton flavours
 - 4μ , $2e2\mu$, $2\mu2e$, 4e

ICNFP 2024

Modelling

- Signal PDF combine 3 distributions:
 - 4-lepton mass
- Signal/background DNN score
- Per-event mass resolution (with Quantile Regression NN)
- Background PDF based on smoothed MC predictions
- Improved μ momentum scale by 20% w.r.t partial Run-2

Mohamed Aly

Full Run-2 (140 fb⁻¹): result

Phys. Lett. B 843 (2023) 137880

Fitting

• Un-binned maximum likelihood fit in each channel then combine

$$m_{H} = 124.$$

Run 1 + Run 2:

 $.94 \pm 0.18$ GeV $[\pm 0.17 (stat.) \pm 0.03 (syst.)]$

Mohamed Aly

Combination

Mass with ATLAS Combined ATLAS results with full Run-2 data

<u>Phys. Lett. B 131 (2023) 251802 — aux material</u>

< 0.1% precision

Most precise m_H measurement to-date!

Higgs width Probed with on-shell to off-shell ratios

 $H \rightarrow ZZ:$ Phys. Lett. B 846 (2023) 138223 — aux material $t\bar{t}t\bar{t}$ and $t\bar{t}H:$ arXiv:2407.10631 (see backup)

Challenge

- SM Higgs width is $\Gamma_{H}^{SM} = 4.1 \text{ MeV}$
- 1000x times smaller than reconstructed mass resolution

Challenge

- SM Higgs width is $\Gamma_H^{SM} = 4.1 \text{ MeV}$
- 1000x times smaller than reconstructed mass resolution

Solution

$$\frac{d\sigma_{i\to H\to f}}{dM^2} \sim \frac{\kappa_i^2}{(M^2 - \gamma)^2}$$

 $\frac{2}{i}g_i^2 \cdot \kappa_f^2 g_f^2$ $(m_H^2)^2 + m_H^2 \Gamma_H^2$

κ is a coupling modifier g is SM coupling

Challenge

- SM Higgs width is $\Gamma_H^{SM} = 4.1 \text{ MeV}$
- 1000x times smaller than reconstructed mass resolution

Solution

$$\frac{d\sigma_{i\to H\to f}}{dM^2} \sim \frac{\kappa_i^2}{(M^2 - \gamma)^2}$$

 $k_i^2 g_i^2 \cdot \kappa_f^2 g_f^2$ $(m_H^2)^2 + m_H^2 \Gamma_H^2$

κ is a coupling modifier g is SM coupling

on-shell measurements constrain κ/Γ

Challenge

- SM Higgs width is $\Gamma_H^{SM} = 4.1 \text{ MeV}$
- 1000x times smaller than reconstructed mass resolution

Solution

$$\frac{d\sigma_{i\to H\to f}}{dM^2} \sim \frac{\kappa_i^2}{(M^2 - \gamma)^2}$$

off-shell measurements constrain κ

 $\frac{2}{i}g_i^2\cdot\kappa_f^2g_f^2$ $(m_{H}^{2})^{2} + m_{H}^{2}\Gamma_{H}^{2}$

κ is a coupling modifier g is SM coupling

Challenge

- SM Higgs width is $\Gamma_H^{SM} = 4.1 \text{ MeV}$
- 1000x times smaller than reconstructed mass resolution

Solution

$$\frac{d\sigma_{i\to H\to f}}{dM^2} \sim \frac{\kappa_i^2}{(M^2 - \gamma)^2}$$

off-shell measurements constrain κ

$$\frac{\sigma_{\rm on-shell} / \sigma_{\rm on-shell}^{SM}}{\sigma_{\rm off-shell} / \sigma_{\rm off-shell}^{SM}}$$

 ${}^2_i g_i^2 \cdot \kappa_f^2 g_f^2$ $(m_{H}^{2})^{2} + m_{H}^{2}\Gamma_{H}^{2}$

 κ is a coupling modifier g is SM coupling

on-shell measurements constrain κ/Γ

$$\rightarrow \frac{\mu_{\text{on-shell}}(\kappa, \Gamma)}{\mu_{\text{off-shell}}(\kappa)} \sim \Gamma_H / \Gamma_H^{\text{SM}}$$

Width from $H^* \rightarrow ZZ \rightarrow 4\ell/2\ell 2\nu$ Full Run-2 (140 fb⁻¹): setup

<u>Phys. Lett. B 846 (2023) 138223 — aux material</u>

Categorisation

- 2 channels: 4ℓ , $2\ell 2\nu$
 - 3 SRs in each channel: ggF, EWK and mixed

Fit variables

- 4 *C* channel
- **S/B NN score** 1x for EWK and 1x for ggF
- $2\ell 2\nu$ channel
- Di-boson transverse mass

ICNFP 2024

Large destructive interference for off-shell signal

ICNFP 2024

Mohamed Aly

CP violation and Higgs

Probed with bosons and fermions

VBF $H \rightarrow \gamma\gamma$: Phys. Rev. Lett. 131 (2023) 061802 — aux material VBF $H \rightarrow ZZ$: JHEP 05 (2024) 105 — aux material $H \rightarrow \tau\tau$: Eur. Phys. J. C 83 (2023) 563 — aux material $t\bar{t}H(\rightarrow b\bar{b})$: Phys. Lett. B 849 (2024) 138469 — aux material

Higgs to bosons

Higgs to fermions

Mohamed Aly

Higgs to bosons

Higgs to fermions SMEFT

Mohamed Aly

Higgs to bosons

Higgs to fermions SMEFT

sis	ò	
a	sis	
is	(simp	le

Mohamed Aly

Higgs to bosons

ICNFP 2024

Higgs to fermions SMEFT

Higgs to bosons

ICNFP 2024

Mohamed Aly

 $\operatorname{CP}\operatorname{structure}\operatorname{in} H \to VV$

$\mathrm{VBF}\,H\to\gamma\gamma$

Production-side

H ----¤

Decay-side

$VBFH \rightarrow \gamma\gamma$

Full Run-2 (140 fb⁻¹): setup

<u>Phys. Rev. Lett. 131 (2023) 061802 – aux material</u>

Categorisation

- 3 SRs in 2D BDT-score space
 - Signal vs: $(\gamma\gamma)$ and (ggF)
- Compute OO in each SR \rightarrow six bins \rightarrow six regions (total 18 regions)

Fit variables

• Di-photon mass

	LooseTight	TightTight
${\rm BDT}_{{\rm VBF}/\gamma\gamma}$	LooseTight	TightLoose

 $\mathrm{BDT}_{\mathrm{VBF/ggH}}$

$VBF H \rightarrow \gamma\gamma$ Full Run-2 (140 fb⁻¹): result

<u>Phys. Rev. Lett. 131 (2023) 061802 – aux material</u>

Constraint at 95% CL:

 $-0.034 < \tilde{d} < 0.071$

ICNFP 2024

Fitting

- Un-binned maximum likelihood fit in all regions
- Free-float signal normalisation
- 60 only probes shape effects due to CP-violation

 $-0.55 < c_{H\tilde{W}} < 1.07$

no CP-violation observed

Mohamed Aly

$VBFH \rightarrow ZZ^{\star} \rightarrow 4\ell$

Production-side

Decay-side

$\mathrm{VBF}\,H \to ZZ^{\star} \to 4\ell$

Full Run-2 (140 fb⁻¹): setup

<u> JHEP 05 (2024) 105 — aux material</u>

Categorisation

- Split phase-space by kinematic selections into
 - $ZZ^{\star}CR$
 - VBF-enriched SR (useful for production-side CP-violation)
 - Split to 4 regions by S/B DNN score
 - VBF-depleted SR (useful for decay-side CP-violation)

Fit variables

ICNFP 2024

- Compute two sets of optimal observables:
- Production-level: use VBF production ME (decay-agnostic)
- Decay-level: use Higgs decay ME (production-agnostic)
- 7x Wilson coefficients of-interest \rightarrow 7x observables of each type
- 00 for a signal (combo of active Wilson coeffs) by morphing method

$VBF H \rightarrow ZZ^{\star} \rightarrow 4\ell$

Full Run-2 (140 fb⁻¹): result

<u>JHEP 05 (2024) 105 – aux material</u>

Fitting — Direct coupling measurement

- Three fits are performed
 - Production-only, Decay-only and combined
 - Different combos of SRs/CRs and OO-type to fit
- Float signal normalisation to probe shape-only effects

EFT coupling	Expected 95% CL		
	production-only	decay-only	combined
$C_{H\widetilde{B}}$	—	±0.37	_
$C_{H\widetilde{W}B}$	—	±0.72	—
$c_{H\widetilde{W}}$	±4.8	±1.34	±1.27
\widetilde{d}	±0.63	±0.018	±0.019
\widetilde{c}_{zz}	±2.4	—	—
$\widetilde{c}_{z\gamma}$	±6.6	±0.76	± 0.80
$\widetilde{c}_{\gamma\gamma}$	_	±0.76	_

no CP-violation observed

$VBF H \rightarrow ZZ^{\star} \rightarrow 4\ell$

Full Run-2 (140 fb⁻¹): result

<u>JHEP 05 (2024) 105 – aux material</u>

Fitting — Direct coupling measurement

- Three fits are performed
 - Production-only, Decay-only and combined
 - Different combos of SRs/CRs and OO-type to fit
- Float signal normalisation to probe shape-only effects

Fitting — Differential XS measurements

- Unfold *00*
- Fit $m_{4\ell}$ in each bin

EFT coupling	Expected 95% CL		
	production-only	decay-only	combined
$C_{H\widetilde{B}}$	—	±0.37	—
$C_{H\widetilde{W}B}$	—	±0.72	—
$c_{H\widetilde{W}}$	±4.8	±1.34	±1.27
\widetilde{d}	±0.63	±0.018	±0.019
\widetilde{c}_{zz}	±2.4	_	_
$\widetilde{c}_{z\gamma}$	±6.6	±0.76	± 0.80
$\widetilde{c}_{\gamma\gamma}$	_	±0.76	—

no CP-violation observed

CP structure in $H \rightarrow ff$

$H \rightarrow \tau \tau$

Full Run-2 (140 fb⁻¹): setup

<u>Eur. Phys. J. C 83 (2023) 563 – aux material</u>

Categorisation

- 2 channels: $au_{had} au_{lep}$ and $au_{had} au_{had}$
 - Split to VBF and ggF enriched regions
 - VBF and ggF SRs split by BDT scores / kinematics
- SRs split by impact parameters and spin-analysing functions

Fit variables

- Signed a-coplanarity angle φ_{CP}
 - Angle between au decay planes
 - Reconstruction method depends on π^{\pm}/π^{0} multiplicities
 - Sensitive to CP-mixing angle $\phi_{ au}$

Eur. Phys. J. C 83 (2023) 563 – aux material

no CP-violation observed

ICNFP 2024

Fitting

- Binned maximum likelihood fit in all regions
- Free-float $\phi_{ au}$ and $\mu_{H
 ightarrow au au}$

 $\phi_{\tau} = 9 \pm 16^{\circ}$ and $\phi_{\tau} = 90^{\circ}$ excluded at 3.4 σ

Mohamed Aly

40

$H \rightarrow bb \operatorname{in} t\bar{t}H \operatorname{and} tHq$

ملالله

JULL

Production-side

Decay-side

$t\bar{t}H(\rightarrow b\bar{b})$ and $tH(\rightarrow b\bar{b})q$ Full Run-2 (140 fb⁻¹): setup

<u>Phys. Lett. B 849 (2024) 138469 — aux material</u>

Categorisation

- 2 channels: 1ℓ and 2ℓ
 - Split regions in each channel by jet multiplicity and S/B BDT score
 - Split $1 \ensuremath{\ell}$ channel to resolved and boosted

Fit variables

- Build CP-sensitive observables based on top-quark kinematics
- Use reconstruction BDT to build Higgs and top
- Fit b_2 and b_4 in resolved regions

<u>Phys. Lett. B 849 (2024) 138469 — aux material</u>

Fitting

- Binned max-likelihood fit in all regions
- Free-float α and κ_{\prime}'

 $\alpha = 90^{\circ}$ excluded at 1.2 σ

Uncertainty source	$\Delta \alpha$ [
Process modelling	
Signal modelling	+8.8
$t\bar{t} + \ge 1b$ modelling	
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23
$t\bar{t} + \ge 1b$ NLO matching	+22
$t\bar{t} + \ge 1b$ fractions	+14
$t\bar{t} + \ge 1b$ FSR	+5.2
$t\bar{t} + \ge 1b$ PS & hadronisation	+16
$t\bar{t} + \geq 1b p_{\rm T}^{b\bar{b}}$ shape	+5.4
$t\bar{t} + \ge 1b$ ISR	+14
$t\bar{t} + \ge 1c$ modelling	+6.6
$t\bar{t}$ + light modelling	+2.5

Systematics dominated

Conclusions

- Wide range of Higgs boson properties measured at ATLAS with full Run-2 data
- Mass measurements with $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ reach 0.1% precision
 - Best in the world!
- Width measurements with $H \rightarrow ZZ^{\star}$ moving closer to a precise value
 - Expected precision improvements with more data in Run-3
- **CP structure** measured for Higgs interactions with bosons ($\gamma\gamma$, ZZ) and fermions ($\tau\tau$, bb)
 - With interpretations in the SMEFT and kappa frameworks

ICNFP 2024

Thanks for listening!

Dverview How we get Higgs and how we lose it

Production

Decay

ICNFP 2024

Cross-sections from <u>LHCWG</u> at 13 TeV for $m_H = 125$ GeV

Higgs mass

Choices to be made The Higgs mass: decay channels

Higgs mass = invariant mass of decay products

$H \rightarrow bb/cc/gg$

• Difficult to reconstruct hadronic final states with high resolution

$H \rightarrow WW/\tau\tau$

• Neutrinos in final-state are invisible

$H \rightarrow \mu \mu / ee/Z\gamma$

• Low branching ratios, large backgrounds

$H \rightarrow ZZ/\gamma\gamma$

- Manageable backgrounds
- *Easy* reconstruction

Mass with $H \rightarrow \gamma \gamma$ Photon energy scale improvement JINST 19 (2024) P02009

- The photon energy scale measurement combines has improved:
 - Material modelling \rightarrow 3x better
 - On-detector electronics non-linearity modelling \rightarrow 2x better
 - Electron-to-photon scale extrapolation $\rightarrow 2x$ better
- $Z \rightarrow ee$ calibration scale-factors parameterised in p_T and η

Mass with $H \rightarrow ZZ^* \rightarrow 4\ell$ Full Run-2 (140 fb⁻¹): misc Phys. Lett. B 843 (2023) 137880 $\mathcal{P}(m_{4\ell}, D_{NN}, \sigma_i \mid m_H) = \mathcal{P}(m_{4\ell} \mid D_{NN}, \sigma_i, m_H) \cdot \frac{\mathcal{P}(D_{NN} \mid \sigma_i, m_H)}{\mathcal{P}(D_{NN} \mid \sigma_i, m_H)} \cdot \frac{\mathcal{P}(\sigma_i \mid m_H)}{\mathcal{P}(\sigma_i \mid m_H)}$ $\simeq \mathcal{P}(m_{4\ell} \mid D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} \mid m_H)$ Crystal-ball Gaussian core parametrised for a channel λ with $a^{\lambda} \cdot (m_H - 125 \,\mathrm{GeV}) + b^{\lambda} (D_{NN}),$ b^{λ} is 2^{nd} order poly. $a^{\lambda} \approx 1$ Determined from separate ML fit Core stdev expressed as function of σ_i and

parametrised as function of DNN

ICNFP 2024

Neglected because it's same for signal and NN independent of m_h background around mass peak Determined by interpolation across neighbouring simulated

mass points

Mass with $H \rightarrow ZZ^* \rightarrow 4\ell$

Full Run-2 (140 fb⁻¹): misc

Phys. Lett. B 843 (2023) 137880

ICNFP 2024

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale Electron energy scale Signal-process theory	

Combination

Mass with ATLAS Combined results with full Run-2 data: misc Phys. Lett. B 131 (2023) 251802 – aux material

ICNFP 2024

Source	Systematic uncertainty on m_H [MeV
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Higgs width

$\operatorname{VBF} H \to ZZ^{\star} \to 4\ell$

Full Run-2 (140 fb⁻¹): misc.

<u>JHEP 05 (2024) 105 – aux material</u>

$$m_T^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + \left(p_T^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_T^{\text{miss}}\right)^2}\right]^2 - \left|\vec{p}_T^{\ell\ell} + \vec{E}_T^{\text{mist}}\right|^2}\right]^2}$$

Systematic Uncertainty Fixed Parton shower uncertainty for $gg \rightarrow ZZ$ (Parton shower uncertainty for $gg \rightarrow ZZ$ (NLO EW uncertainty for $qq \rightarrow ZZ$ NLO QCD uncertainty for $gg \rightarrow ZZ$ Parton shower uncertainty for $qq \rightarrow ZZ$ (Jet energy scale and resolution uncertainty None

$$\nu^{\text{ggF}}(\mu_{\text{off-shell}}^{\text{ggF}}, \boldsymbol{\theta}) = \mu_{\text{off-shell}}^{\text{ggF}} \cdot n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot (n_{\text{SBI}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})) + n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta}) = (\mu_{\text{off-shell}}^{\text{ggF}} - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot n_{\text{SBI}}^{\text{ggF}}(\boldsymbol{\theta}) + (1 - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})$$

	$\mu_{\text{off-shell}}$ value at which $-2 \ln \lambda(\mu_{\text{off-shell}}) = 4$
(normalisation)	2.26
(shape)	2.29
	2.27
	2.29
(shape)	2.29
у	2.26
	2.30

Multi-top united for width The idea

<u>Phys. Rev. D 99, 113003</u> (theory)

arXiv:2407.10631 — submitted to PLB

Off-shell

ICNFP 2024

On-shell

Production	Decay
VBF, WH , ZH , $t\bar{t}H$, tH	$H \rightarrow \gamma \gamma$
$t\bar{t}H + tH$	$H \rightarrow b \bar{b}$
WH, ZH	$H \rightarrow b \bar{b}$
VBF	$H \rightarrow b \bar{b}$
$/BF, WH + ZH, t\bar{t}H + tH$	$H \rightarrow ZZ$
ggF, VBF	$H \to WW$
WH, ZH	$H \to WW$
$/BF, WH + ZH, t\overline{t}H + tH$	$H \to \tau \tau$
$\overline{t}H + tH$, VBF+ $WH + ZH$	$H \rightarrow \mu \mu$
Inclusive	$H \to Z\gamma$

Mohamed Aly

Combination

- Aggregate statistical model from all ATLAS Higgs measurements
 - Except $t\bar{t}H(\rightarrow \text{leptons})$
- Perform a fit using the aggregated model
- Free-float:
 - tree-level κ (e.g. $\kappa_t, \kappa_b, \ldots$)
 - effective loop κ (e.g. $\kappa_g, \kappa_\gamma, \ldots$)
- Allow Higgs width to float for all models

Multi-top united for width

The result

ICNFP 2024

Combination

CP violation and Higgs

CP structure $in H \rightarrow VV$

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde W}$	$\Phi^{\dagger}\Phi \tilde{W}^{I}_{\mu\nu}W^{\mu\nu I}$	$c_{H\widetilde{W}}$
$O_{\Phi ilde W B}$	$\Phi^{\dagger} \tau^{I} \Phi \tilde{W}^{I}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$
$O_{\Phi ilde B}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
	Higgs Basis	
$O_{hZ ilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}
$O_{hZ ilde{A}}$	$h Z_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
$O_{hA ilde{A}}$	$h A_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$

 $\begin{array}{ll} \mbox{HISZ basis} \\ \tilde{d}: & \tilde{c}_{HW\tilde{B}} = 0, \quad \tilde{c}_{HW} = \tilde{c}_{HB\tilde{B}} = \frac{\Lambda^2}{v^2} \tilde{d}, \\ \\ \tilde{c}_{Z\gamma} = 0, \quad \tilde{c}_{\gamma\gamma} = \sin^2 \theta_W \cos^2 \theta_W \tilde{c}_{ZZ} \propto \tilde{d} \end{array}$

$\mathrm{VBF}\,H\to\gamma\gamma$ Full Run-2 (140 fb⁻¹): setup

ICNFP 2024

<u>JHEP 05 (2024) 105 – aux material</u>

IP-method

one π^{\pm} per au

ICNFP 2024

ICNFP 2024

Full Run-2 (140 fb⁻¹): setup

<u>Eur. Phys. J. C 83 (2023) 563 – aux material</u>

Decay channe	l Decay mode combination	Method	Fraction in all	au-lepton-pair decays		Set of nuisance parameters	Impact on ϕ_{τ} [deg
$ au_{ m lep} au_{ m had}$	ℓ–1p0n ℓ–1p1n ℓ–1pXn	IP IP- ρ IP- ρ	1	8.1% 8.3% 7.6%		Jet energy scale Jet energy resolution	3.4 2.5
	ℓ-3p0n	$IP-a_1$		6.9%		Pile-up jet tagging	0.5
	1p0n–1p0n 1p0n–1p1n	IP IP–p		1.3% 6.0%		Jet flavour tagging	0.2
$ au_{ m had} au_{ m had}$	1p1n–1p1n 1p0n–1pXn	ho IP– $ ho$		6.7% 2.5%		Electron	0.4
	1p1n–1pXn 1p1n–3p0n	ρ $ ho$ - a_1		5.6% 5.1%		Muon $\tau_{\rm tot}$ reconstruction	0.9
						Misidentified τ	0.6
						$\tau_{\rm had}$ decay mode classification π^0 angular resolution and energy scale	0.3
ation	Selection criteria	Channel	Signal region	Decay mode combination	on Selection criteria	π align a resolution and energy scale Track $(-+)$ impost non-star	0.2
$ d_0^{\operatorname{sig}}(e) $	$ > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$ $ d_0^{\text{sig}}(\tau_{1\text{p}0\text{p}}) > 1.5$			1p0n-1p0n	$ d_0^{sig}(au_1) > 1.5$ $ d_0^{sig}(au_2) > 1.5$	Luminosity	0.7
$ d_0^{\text{sig}}(e) $	$\frac{ 1 + 0^{1} + (\tau_{1} + \tau_{0}) ^{1}}{ 1 + 2.5 \text{ or } d_{0}^{\text{sig}}(\mu) > 2.0}$		High	1p0n-1p1n	$ d_0^{sig}(\tau_{1p0n}) > 1.5$ $ y^{\rho}(\tau_{1p1n}) > 0.1$	Theory uncertainty in $H \rightarrow \tau \tau$ processes Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.5 1.1
$ d_0^{\text{sig}}(e) $	$ > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$			lpln-lpln	$ y^{\rho}(\tau_1)y^{\rho}(\tau_2) > 0.2$	Simulated background sample statistics Signal normalisation	1.4 1.4
$ d_0^{\mathrm{sig}}(e) $	$\frac{ y^{p}(\tau_{1pXn}) > 0.1}{ y > 2.5 \text{ or } d_{0}^{\text{sig}}(\mu) > 2.0}$	$ au_{ m had} au_{ m had}$		1p0n–1pXn	$ d_0^{\text{sig}}(\tau_{1\text{p0n}}) > 1.5$ $ \gamma^{\rho}(\tau_{1\text{pXn}}) > 0.1$	Background normalisation	0.6
Not sa	$ y^{a_1}(\tau_{3p0n}) > 0.6$ tisfying selection criteria		Medium	1p1n–1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$	Total systematic uncertainty Data sample statistics	5.2 15.6
				1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{3p0n}) > 0.6$	Total	16.4
			Low	All above	Not satisfying selection criteria		

		De	cay channel	Decay mode combination	Method	Fraction in all	τ -lepton-pair decays		Set of nuisance parameters	Impact on ϕ_{τ} [deg
			$ au_{ m len} au_{ m had}$	ℓ–1p0n ℓ–1p1n	IP IP–o	1	8.1% 8.3%		Jet energy scale	3.4
			(icp) had	ℓ–1pXn	$IP-\rho$		7.6%		Jet energy resolution	2.5
				ℓ–3p0n	IP– a_1		6.9%		Pile-up jet tagging	0.5
				1p0n-1p0n	IP		1.3%		Jet flavour tagging	0.2
				1p0n-1p1n	IP–ρ		6.0%		$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
			$ au_{ m had} au_{ m had}$	1p0n-1pXn	ρ IP- ρ		2.5%		Electron	0.3
				1p1n–1pXn	ρ		5.6%		Muon	0.9
				1p1n-3p0n	ρ - a_1		5.1%		$\tau_{\rm had}$ reconstruction	1.0
									Misidentified $ au$	0.6
									$ au_{had}$ decay mode classification	0.3
Channel	Signal region	Decay mode combination	1	Selection criteria	Channel	Signal region	Decay mode combination	Selection criteria	π^0 angular resolution and energy scale	0.2
			$d^{sig}(a)$	$ > 2.5 \text{ or } d^{\text{sig}}(\omega) > 2.0$		88		$ d^{\operatorname{sig}}(\tau_1) > 1.5$	Track (π^{\pm} , impact parameter)	0.7
		ℓ –1p0n	$ a_0^{-}(e) $	$ > 2.5 \text{ of } a_0^{-1}(\mu) > 2.0$ $d^{\text{sig}}(\tau_{1,0,0}) > 1.5$			1p0n-1p0n	$ u_0^{(\tau_1)} > 1.5$ $ d_0^{\text{sig}}(\tau_2) > 1.5$	Luminosity	0.1
	High			$\frac{u_0}{1 + 25} = \frac{v^{\text{sig}}}{1 + 25}$		TT' 1		$ d_{\rm s}^{\rm sig}(\tau_{1\rm p0n}) > 1.5$	Theory uncertainty in $H \rightarrow \tau \tau$ processes	1.5
		ℓ–1p1n	$ a_0^{\circ}(e) $	$ > 2.5 \text{ or } a_0^{\circ}(\mu) > 2.0$ $ v^{\rho}(\tau_{1n1n}) > 0.1$		High	1p0n-1p1n	$ y^{\rho}(\tau_{1p1n}) > 0.1$	Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.1
			d ^{sig} (a)	$ > 2.5 \text{ or } d^{\text{sig}}(\omega) > 2.0$				$ v^{\rho}(\tau_{1})v^{\rho}(\tau_{2}) > 0.2$	Simulated background sample statistics	1.4
· lep · had		ℓ–1pXn	$ a_0 (e) $	$ > 2.5 \text{ of } a_0(\mu) > 2.0$ $ v^{\rho}(\tau_{1nYn}) > 0.1$				y ((1)y ((2)) > 0.2	Signal normalisation	1.4
	Medium		$d^{\text{sig}}(a)$	$\frac{ \nabla 2.5 \text{ or } d^{\text{sig}}(u) > 2.0}{ \nabla 2.0 }$	$ au_{ m had} au_{ m had}$		1p0n–1pXn	$ d_0^{\text{sig}}(\tau_{1\text{p0n}}) > 1.5$	Background normalisation	0.6
		ℓ–3p0n	$ a_0(e) $	$ v^{a_1}(\tau_{3n0n}) > 0.6$				$ y^{p}(\tau_{1pXn}) > 0.1$	Total systematic uncertainty	5.2
	Low	All above	Not sat	isfying selection criteria		Medium	1p1n–1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$	Data sample statistics	15.6
							1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{3p0n}) > 0.6$	Total	16.4
						Low	All above	Not satisfying selection criteria		

$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$

$H \rightarrow bb \operatorname{in} t\bar{t}H \operatorname{and} tHq$

$t\bar{t}H(\rightarrow bb)$ and $tH(\rightarrow b\bar{b})q$ Full Run-2 (140 fb⁻¹): setup

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{no-reco}^{\geq 4j,\geq 4b}$	_	$\Delta\eta_{\ell\ell}$
Dilector (TD $\geq 4i, \geq 4b$)	$CR^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	b_4
Dilepton (IR ⁻¹)	$\mathrm{SR}_1^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$	b_4
	$\operatorname{SR}_2^{\geq 4j, \geq 4b}$	$BDT^{\ge 4j,\ge 4b} \in [0.186, 1]$	b_4
	$ $ CR ₁ ^{$\geq 6j, \geq 4b$}	BDT ^{$\geq 6j, \geq 4b$} $\in [-1, -0.128)$	b_2
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$\operatorname{CR}_{2}^{\geq 6j, \geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-0.128, 0.249)$	b_2
	$\mathrm{SR}^{\tilde{\geq}6j,\geq4b}$	$BDT^{\geq 6j, \geq 4b} \in [0.249, 1]$	b_2
ℓ +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}

ICNFP 2024

Process modelling+8.8-14 $t\bar{t} + \ge 1b$ modelling $t\bar{t} + \ge 1b$ modelling-37 $t\bar{t} + \ge 1b$ MLO matching+22-33 $t\bar{t} + \ge 1b$ NLO matching+22-33 $t\bar{t} + \ge 1b$ fractions+14-21 $t\bar{t} + \ge 1b$ fractions+14-21 $t\bar{t} + \ge 1b$ FSR+5.2-9.9 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ DS & hadronisation+16-24 $t\bar{t} + \ge 1b$ DS & thadronisation+16-24 $t\bar{t} + \ge 1b$ DS & hadronisation+16-24 $t\bar{t} + \ge 1b$ DS & thadronisation+16-24 $t\bar{t} + \ge 1b$ DS & thadronisation+16-24 $t\bar{t} + \ge 1b$ DS & thadronisation+16-24 $t\bar{t} + \ge 1b$ ISR+14-24 $t\bar{t} + \ge 1b$ modelling+5.4-4.6 $t\bar{t} + \ge 1c$ modelling+6.6-11 $t\bar{t} + \log$ modelling+2.5-4.7b-tagging efficiency and mis-tag rates+6.7-11 <i>l</i> -mis-tag rates+6.7-11 <i>l</i> -mis-tag rates+2.3-2.7Jet energy scale (flavour)+7.8-11 <i>b</i> -jet energy scale (pileup)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9 $t\bar{t} + \ge 1b$ normalisation+8.2-1	Uncertainty source	$\Delta lpha$	$\Delta \alpha$ [°]	
Signal modelling+8.8-14 $t\bar{t} + \ge 1b$ modelling $t\bar{t} + \ge 1b$ modelling $t\bar{t} + \ge 1b$ NLO matching+22-33 $t\bar{t} + \ge 1b$ NLO matching+22-33 $t\bar{t} + \ge 1b$ fractions+14-21 $t\bar{t} + \ge 1b$ FSR+5.2-9.9 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ DS & hadronisation+16-24 $t\bar{t} + \ge 1b$ modelling+5.4-4.6 $t\bar{t} + \ge 1c$ modelling+5.4-4.6 b -tagging efficiency and mis-tag rates-13 b -tagging efficiency and mis-tag rates+2.3-2.7Jet energy scale (flavour)+7.8-11 b -get energy scale (flavour)+7.8-11 b -get energy scale (pileup)+5.2-7.9Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9 $t\bar{t} + \ge 1b$ normalisation+8.2-13 κ'_{t} +17-33Total statistical uncertainty+32-49Total uncertainty+52	Process modelling			
$t\bar{t} + \ge 1b$ modelling $+\bar{t}\bar{t} + \ge 1b$ AV5 FS $+23$ -37 $t\bar{t} + \ge 1b$ NLO matching $+22$ -33 $t\bar{t} + \ge 1b$ fractions $+14$ -21 $t\bar{t} + \ge 1b$ FSR $+5.2$ -9.9 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ DSR $+14$ -24 $t\bar{t} + \ge 1c$ modelling $+6.6$ -11 $t\bar{t} + \log$ ing efficiency and mis-tag rates -4.7 b-tagging efficiency and mis-tag rates -4.7 b-tagging efficiency and resolution -11 b -tag rates $+6.7$ -11 l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution -3.8 b -jet energy scale (flavour) $+7.8$ -11 b -id energy scale (pileup) $+5.2$ -7.9 J et energy resolution $+5.7$ -9.3 $Luminosity$ $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Signal modelling	+8.8	-14	
$\begin{array}{ccccc} t \Tilde{t} + \geq 1b \ \text{4V5 FS} & +23 & -37 \\ t \Tilde{t} + \geq 1b \ \text{NLO matching} & +22 & -33 \\ t \Tilde{t} + \geq 1b \ \text{fractions} & +14 & -21 \\ t \Tilde{t} + \geq 1b \ \text{FSR} & +5.2 & -9.9 \\ t \Tilde{t} + \geq 1b \ \text{PS} \ \text{k} \ \text{hadronisation} & +16 & -24 \\ t \Tilde{t} + \geq 1b \ \text{P} \ \text{b}^{\text{b}^{\text{b}}} \ \text{shape} & +5.4 & -4.6 \\ t \Tilde{t} + \geq 1b \ \text{ISR} & +14 & -24 \\ t \Tilde{t} + \geq 1b \ \text{ISR} & +14 & -24 \\ t \Tilde{t} + \geq 1b \ \text{modelling} & +6.6 & -11 \\ t \Tilde{t} + \geq 1c \ \text{modelling} & +2.5 & -4.7 \\ \end{array}$ $\begin{array}{c} b \-\text{tagging efficiency} & +8.7 & -15 \\ c \-\text{mis-tag rates} & +2.3 & -2.7 \\ \hline b \-\text{tagging efficiency} & +8.7 & -15 \\ c \-\text{mis-tag rates} & +2.3 & -2.7 \\ \hline \text{Jet energy scale and resolution} & b \-\text{jet energy scale} \ \text{(flavour)} & +7.8 & -11 \\ \hline \text{Jet energy scale} \ (\text{flavour}) & +5.2 & -7.9 \\ \hline \text{Jet energy scale} \ (\text{remaining}) & +8.1 & -13 \\ \hline \text{Jet energy scale} \ (\text{remaining}) & +8.1 & -13 \\ \hline \text{Jet energy resolution} & +5.7 & -9.3 \\ \hline \text{Luminosity} & \leq \pm 1 \\ \hline \text{Other sources} & +4.9 & -8 \\ \hline \hline \text{Total systematic uncertainty} & +41 & -54 \\ \hline \hline \hline \text{Total uncertainty} & +32 & -49 \\ \hline \hline \hline \text{Total uncertainty} & +52 & -73 \end{array}$	$t\bar{t} + \ge 1b$ modelling			
$t\bar{t} + \ge 1b$ NLO matching $+22$ -33 $t\bar{t} + \ge 1b$ fractions $+14$ -21 $t\bar{t} + \ge 1b$ FSR $+5.2$ -9.9 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ p $p_T^{b\bar{b}}$ shape $+5.4$ -4.6 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1b$ modelling $+6.6$ -11 $t\bar{t} + 1c$ modelling $+2.5$ -4.7 b-tagging efficiency and mis-tag rates -4.7 b-tagging efficiency and mis-tag rates $+6.7$ -11 l -mis-tag rates $+6.7$ -11 l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (pileup) $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49	$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23	-37	
$t\bar{t} + \ge 1b$ fractions $+14$ -21 $t\bar{t} + \ge 1b$ FSR $+5.2$ -9.9 $t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ PS & hape $+5.4$ -4.6 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1c$ modelling $+6.6$ -11 $t\bar{t} + 1ight$ modelling $+2.5$ -4.7 b -tagging efficiency and mis-tag rates b b -tagging efficiency and mis-tag rates $+6.7$ -11 l -mis-tag rates $+6.7$ -11 l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (flavour) $+7.8$ -11 b -get energy scale (pileup) $+5.2$ -7.9 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49	$t\bar{t} + \ge 1b$ NLO matching	+22	-33	
$t\bar{t} + \ge 1b$ FSR+5.2-9.9 $t\bar{t} + \ge 1b$ PS & hadronisation+16-24 $t\bar{t} + \ge 1b$ PS & hape+5.4-4.6 $t\bar{t} + \ge 1b$ ISR+14-24 $t\bar{t} + \ge 1b$ ISR+14-24 $t\bar{t} + \ge 1c$ modelling+6.6-11 $t\bar{t} + 1$ hight modelling+2.5-4.7b-tagging efficiency and mis-tag ratesb-tagging efficiency+8.7 b -tagging efficiency and mis-tag rates+6.7-11 l -mis-tag rates+6.7-11 l -mis-tag rates+2.3-2.7Jet energy scale and resolutionb-jet energy scale (flavour)+7.8 b -jet energy scale (flavour)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources $t\bar{t} + \ge 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	$t\bar{t} + \ge 1b$ fractions	+14	-21	
$t\bar{t} + \ge 1b$ PS & hadronisation $+16$ -24 $t\bar{t} + \ge 1b$ $p_T^{b\bar{b}}$ shape $+5.4$ -4.6 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1c$ modelling $+6.6$ -11 $t\bar{t} + \ge 1c$ modelling $+2.5$ -4.7 b -tagging efficiency and mis-tag rates b -tagging efficiency $+8.7$ -15 c -mis-tag rates $+6.7$ -11 l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (flavour) $+7.8$ -11 Jet energy scale (flavour) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49	$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9	
$t\bar{t} + \ge 1b \ p_T^{b\bar{b}}$ shape $+5.4$ -4.6 $t\bar{t} + \ge 1b$ ISR $+14$ -24 $t\bar{t} + \ge 1c$ modelling $+6.6$ -11 $t\bar{t} + 1$ light modelling $+2.5$ -4.7 b -tagging efficiency and mis-tag rates b -tagging efficiency $+8.7$ -15 c -mis-tag rates $+6.7$ -11 l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+52$ -73	$t\bar{t} + \ge 1b$ PS & hadronisation	+16	-24	
$t\bar{t} + \ge 1b$ ISR+14-24 $t\bar{t} + \ge 1c$ modelling+6.6-11 $t\bar{t} + \text{light modelling}+2.5-4.7b-tagging efficiency and mis-tag rates-15b-tagging efficiency+8.7-15c-mis-tag rates+6.7-11l-mis-tag rates+2.3-2.7Jet energy scale and resolution-jet energy scale (flavour)+7.8-11Jet energy scale (flavour)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity\leq \pm 1Other sources+4.9-8Total systematic uncertainty+41-54t\bar{t} + \ge 1b normalisation+8.2-13\kappa'_t+17-33Total uncertainty+52-73$	$t\bar{t} + \geq 1b p_{\rm T}^{b\bar{b}}$ shape	+5.4	-4.6	
$t\bar{t} + \ge 1c$ modelling+6.6-11 $t\bar{t} +$ light modelling+2.5-4.7 b -tagging efficiency and mis-tag rates+8.7-15 c -mis-tag rates+6.7-11 l -mis-tag rates+2.3-2.7Jet energy scale and resolution+1.6-3.8 b -jet energy scale (flavour)+7.8-11Jet energy scale (pileup)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9-8Total systematic uncertainty+41-54 $t\bar{t} + \ge 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+52-73	$t\bar{t} + \ge 1b$ ISR	+14	-24	
$t\bar{t}$ + light modelling+2.5-4.7b-tagging efficiency and mis-tag rates+8.7-15c-mis-tag rates+6.7-11l-mis-tag rates+2.3-2.7Jet energy scale and resolution+1.6-3.8Jet energy scale (flavour)+7.8-11Jet energy scale (pileup)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9-8Total systematic uncertainty+41-54 $t\bar{t} + \geq 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	$t\bar{t} + \ge 1c$ modelling	+6.6	-11	
b-tagging efficiency and mis-tag rates+8.7-15b-tagging efficiency+8.7-11c-mis-tag rates+6.7-11l-mis-tag rates+2.3-2.7Jet energy scale and resolutionb-jet energy scale (flavour)+7.8-11b-iet energy scale (flavour)+7.8-11Jet energy scale (pileup)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9-8Total systematic uncertainty+41-54 $t\bar{t} + \geq 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	$t\bar{t}$ + light modelling	+2.5	-4.7	
b-tagging efficiency $+8.7$ -15 c-mis-tag rates $+6.7$ -11 l-mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (flavour) $+7.8$ -11 b-jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ -54 Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	<i>b</i> -tagging efficiency and mis-tag rates			
c-mis-tag rates+6.7-11 l -mis-tag rates+2.3-2.7Jet energy scale and resolution+1.6-3.8 b -jet energy scale (flavour)+7.8-11Jet energy scale (pileup)+5.2-7.9Jet energy scale (remaining)+8.1-13Jet energy resolution+5.7-9.3Luminosity $\leq \pm 1$ Other sources+4.9-8Total systematic uncertainty+41-54 $t\bar{t} + \geq 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	<i>b</i> -tagging efficiency	+8.7	-15	
l -mis-tag rates $+2.3$ -2.7 Jet energy scale and resolution b -jet energy scale (mession) $+1.6$ -3.8 Jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	<i>c</i> -mis-tag rates	+6.7	-11	
Jet energy scale and resolution b -jet energy scale $+1.6$ -3.8 Jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	<i>l</i> -mis-tag rates	+2.3	-2.7	
b-jet energy scale $+1.6$ -3.8 Jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Jet energy scale and resolution			
Jet energy scale (flavour) $+7.8$ -11 Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	<i>b</i> -jet energy scale	+1.6	-3.8	
Jet energy scale (pileup) $+5.2$ -7.9 Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Jet energy scale (flavour)	+7.8	-11	
Jet energy scale (remaining) $+8.1$ -13 Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Jet energy scale (pileup)	+5.2	-7.9	
Jet energy resolution $+5.7$ -9.3 Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Jet energy scale (remaining)	+8.1	-13	
Luminosity $\leq \pm 1$ Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \geq 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Jet energy resolution	+5.7	-9.3	
Other sources $+4.9$ -8 Total systematic uncertainty $+41$ -54 $t\bar{t} + \ge 1b$ normalisation $+8.2$ -13 κ'_t $+17$ -33 Total statistical uncertainty $+32$ -49 Total uncertainty $+52$ -73	Luminosity	$\leq \pm$:1	
Total systematic uncertainty+41-54 $t\bar{t} + \ge 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	Other sources	+4.9	-8	
$t\bar{t} + \ge 1b$ normalisation+8.2-13 κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	Total systematic uncertainty	+41	-54	
κ'_t +17-33Total statistical uncertainty+32-49Total uncertainty+52-73	$t\bar{t} + \ge 1b$ normalisation	+8.2	-13	
Total statistical uncertainty+32-49Total uncertainty+52-73	κ_t'	+17	-33	
Total uncertainty+52-73	Total statistical uncertainty	+32	-49	
	Total uncertainty	+52	-73	

Mohamed Aly

Backup

Dverview How we get Higgs and how we lose it

Production

Decay

ICNFP 2024

Cross-sections from <u>LHCWG</u> at 13 TeV for $m_H = 125$ GeV

Higgs mass

Choices to be made The Higgs mass: decay channels

Higgs mass = invariant mass of decay products

$H \rightarrow bb/cc/gg$

• Difficult to reconstruct hadronic final states with high resolution

$H \rightarrow WW/\tau\tau$

• Neutrinos in final-state are invisible

$H \rightarrow \mu \mu / ee/Z\gamma$

• Low branching ratios, large backgrounds

$H \rightarrow ZZ/\gamma\gamma$

- Manageable backgrounds
- *Easy* reconstruction

Mass with $H \rightarrow \gamma \gamma$ Photon energy scale improvement JINST 19 (2024) P02009

- The photon energy scale measurement combines has improved:
 - Material modelling \rightarrow 3x better
 - On-detector electronics non-linearity modelling \rightarrow 2x better
 - Electron-to-photon scale extrapolation $\rightarrow 2x$ better
- $Z \rightarrow ee$ calibration scale-factors parameterised in p_T and η

Mass with $H \rightarrow ZZ^* \rightarrow 4\ell$ Full Run-2 (140 fb⁻¹): misc Phys. Lett. B 843 (2023) 137880 $\mathcal{P}(m_{4\ell}, D_{NN}, \sigma_i \mid m_H) = \mathcal{P}(m_{4\ell} \mid D_{NN}, \sigma_i, m_H) \cdot \frac{\mathcal{P}(D_{NN} \mid \sigma_i, m_H)}{\mathcal{P}(D_{NN} \mid \sigma_i, m_H)} \cdot \frac{\mathcal{P}(\sigma_i \mid m_H)}{\mathcal{P}(\sigma_i \mid m_H)}$ $\simeq \mathcal{P}(m_{4\ell} \mid D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} \mid m_H)$ Crystal-ball Gaussian core parametrised for a channel λ with $a^{\lambda} \cdot (m_H - 125 \,\mathrm{GeV}) + b^{\lambda} (D_{NN}),$ b^{λ} is 2^{nd} order poly. $a^{\lambda} \approx 1$ Determined from separate ML fit Core stdev expressed as function of σ_i and

parametrised as function of DNN

ICNFP 2024

Neglected because it's same for signal and NN independent of m_h background around mass peak Determined by interpolation across neighbouring simulated

mass points

Mass with $H \rightarrow ZZ^* \rightarrow 4\ell$

Full Run-2 (140 fb⁻¹): misc

Phys. Lett. B 843 (2023) 137880

ICNFP 2024

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale Electron energy scale Signal-process theory	

Combination

Mass with ATLAS Combined results with full Run-2 data: misc Phys. Lett. B 131 (2023) 251802 – aux material

ICNFP 2024

Source	Systematic uncertainty on m_H [MeV
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Higgs width

$\operatorname{VBF} H \to ZZ^{\star} \to 4\ell$

Full Run-2 (140 fb⁻¹): misc.

<u>JHEP 05 (2024) 105 – aux material</u>

$$m_T^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + \left(p_T^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_T^{\text{miss}}\right)^2}\right]^2 - \left|\vec{p}_T^{\ell\ell} + \vec{E}_T^{\text{mist}}\right|^2}\right]^2}$$

Systematic Uncertainty Fixed Parton shower uncertainty for $gg \rightarrow ZZ$ (Parton shower uncertainty for $gg \rightarrow ZZ$ (NLO EW uncertainty for $qq \rightarrow ZZ$ NLO QCD uncertainty for $gg \rightarrow ZZ$ Parton shower uncertainty for $qq \rightarrow ZZ$ (Jet energy scale and resolution uncertainty None

$$\nu^{\text{ggF}}(\mu_{\text{off-shell}}^{\text{ggF}}, \boldsymbol{\theta}) = \mu_{\text{off-shell}}^{\text{ggF}} \cdot n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot (n_{\text{SBI}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})) + n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta}) = (\mu_{\text{off-shell}}^{\text{ggF}} - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot n_{\text{SBI}}^{\text{ggF}}(\boldsymbol{\theta}) + (1 - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})$$

	$\mu_{\text{off-shell}}$ value at which $-2 \ln \lambda(\mu_{\text{off-shell}}) = 4$
(normalisation)	2.26
(shape)	2.29
	2.27
	2.29
(shape)	2.29
у	2.26
	2.30

Multi-top united for width The idea

<u>Phys. Rev. D 99, 113003</u> (theory)

arXiv:2407.10631 — submitted to PLB

Off-shell

ICNFP 2024

On-shell

Production	Decay
VBF, WH , ZH , $t\bar{t}H$, tH	$H \rightarrow \gamma \gamma$
$t\bar{t}H + tH$	$H \rightarrow b \bar{b}$
WH, ZH	$H \rightarrow b \bar{b}$
VBF	$H \rightarrow b \bar{b}$
$/BF, WH + ZH, t\bar{t}H + tH$	$H \rightarrow ZZ$
ggF, VBF	$H \to WW$
WH, ZH	$H \to WW$
$/BF, WH + ZH, t\overline{t}H + tH$	$H \to \tau \tau$
$\overline{t}H + tH$, VBF+ $WH + ZH$	$H \rightarrow \mu \mu$
Inclusive	$H \to Z\gamma$

Mohamed Aly

Combination

- Aggregate statistical model from all ATLAS Higgs measurements
 - Except $t\bar{t}H(\rightarrow \text{leptons})$
- Perform a fit using the aggregated model
- Free-float:
 - tree-level κ (e.g. $\kappa_t, \kappa_b, \ldots$)
 - effective loop κ (e.g. $\kappa_g, \kappa_\gamma, \ldots$)
- Allow Higgs width to float for all models

Multi-top united for width

The result

ICNFP 2024

Combination

CP violation and Higgs

CP structure $in H \rightarrow VV$

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde W}$	$\Phi^{\dagger}\Phi \tilde{W}^{I}_{\mu\nu}W^{\mu\nu I}$	$c_{H\widetilde{W}}$
$O_{\Phi ilde W B}$	$\Phi^{\dagger} \tau^{I} \Phi \tilde{W}^{I}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$
$O_{\Phi ilde B}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
	Higgs Basis	
$O_{hZ ilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}
$O_{hZ ilde{A}}$	$h Z_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
$O_{hA ilde{A}}$	$h A_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$

 $\begin{array}{ll} \mbox{HISZ basis} \\ \tilde{d}: & \tilde{c}_{HW\tilde{B}} = 0, \quad \tilde{c}_{HW} = \tilde{c}_{HB\tilde{B}} = \frac{\Lambda^2}{v^2} \tilde{d}, \\ \tilde{c}_{Z\gamma} = 0, \quad \tilde{c}_{\gamma\gamma} = \sin^2 \theta_W \cos^2 \theta_W \tilde{c}_{ZZ} \propto \tilde{d} \end{array}$

$\mathrm{VBF}\,H\to\gamma\gamma$ Full Run-2 (140 fb⁻¹): setup

ICNFP 2024

<u>JHEP 05 (2024) 105 – aux material</u>

IP-method

one π^{\pm} per au

ICNFP 2024

Full Run-2 (140 fb⁻¹): setup

<u>Eur. Phys. J. C 83 (2023) 563 – aux material</u>

Decay channe	l Decay mode combination	Method	Fraction in all	au-lepton-pair decays		Set of nuisance parameters	Impact on ϕ_{τ} [deg
$ au_{ m lep} au_{ m had}$	ℓ–1p0n ℓ–1p1n ℓ–1pXn	IP IP- ρ IP- ρ	1	8.1% 8.3% 7.6%		Jet energy scale Jet energy resolution	3.4 2.5
	ℓ-3p0n	$IP-a_1$		6.9%		Pile-up jet tagging	0.5
	1p0n–1p0n 1p0n–1p1n	IP IP–p		1.3% 6.0%		Jet flavour tagging	0.2
$ au_{ m had} au_{ m had}$	1p1n–1p1n 1p0n–1pXn	ho IP– $ ho$		6.7% 2.5%		Electron	0.4
	1p1n–1pXn 1p1n–3p0n	ρ $ ho$ - a_1		5.6% 5.1%		Muon $\tau_{\rm tot}$ reconstruction	0.9
						Misidentified τ	0.6
						$\tau_{\rm had}$ decay mode classification π^0 angular resolution and energy scale	0.3
ation	Selection criteria	Channel	Signal region	Decay mode combination	on Selection criteria	π align a resolution and energy scale Track $(-+)$ impost non-star	0.2
$ d_0^{\operatorname{sig}}(e) $	$ > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$ $ d_0^{\text{sig}}(\tau_{1\text{p}0\text{p}}) > 1.5$			1p0n-1p0n	$ d_0^{sig}(au_1) > 1.5$ $ d_0^{sig}(au_2) > 1.5$	Luminosity	0.7
$ d_0^{\text{sig}}(e) > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$			High	1p0n-1p1n	$ d_0^{sig}(\tau_{1p0n}) > 1.5$ $ y^{\rho}(\tau_{1p1n}) > 0.1$	Theory uncertainty in $H \rightarrow \tau \tau$ processes Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.5 1.1
$ d_0^{\text{sig}}(e) $	$ > 2.5 \text{ or } d_0^{\text{sig}}(\mu) > 2.0$			lpln-lpln	$ y^{\rho}(\tau_1)y^{\rho}(\tau_2) > 0.2$	Simulated background sample statistics Signal normalisation	1.4 1.4
$ d_0^{\mathrm{sig}}(e) $	$\frac{ y^{p}(\tau_{1pXn}) > 0.1}{ y > 2.5 \text{ or } d_{0}^{\text{sig}}(\mu) > 2.0}$	$ au_{ m had} au_{ m had}$		1p0n–1pXn	$ d_0^{\text{sig}}(\tau_{1\text{p0n}}) > 1.5$ $ \gamma^{\rho}(\tau_{1\text{pXn}}) > 0.1$	Background normalisation	0.6
Not sa	$ y^{a_1}(\tau_{3p0n}) > 0.6$ tisfying selection criteria		Medium	1p1n–1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$	Total systematic uncertainty Data sample statistics	5.2 15.6
				1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{3p0n}) > 0.6$	Total	16.4
			Low	All above	Not satisfying selection criteria		

		De	cay channel	Decay mode combination	Method	Fraction in all	τ -lepton-pair decays		Set of nuisance parameters	Impact on ϕ_{τ} [deg
			$ au_{ m len} au_{ m had}$	ℓ–1p0n ℓ–1p1n	IP IP–o	1	8.1% 8.3%		Jet energy scale	3.4
			(icp) had	ℓ–1pXn	$IP-\rho$		7.6%		Jet energy resolution	2.5
				ℓ–3p0n	IP– a_1		6.9%		Pile-up jet tagging	0.5
				1p0n-1p0n	IP		1.3%		Jet flavour tagging	0.2
				1p0n-1p1n	IP–ρ		6.0%		$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4
			$ au_{ m had} au_{ m had}$	1p0n-1pXn	ρ IP- ρ		2.5%		Electron	0.3
				1p1n–1pXn	ρ		5.6%		Muon	0.9
				1p1n-3p0n	ρ - a_1		5.1%		$\tau_{\rm had}$ reconstruction	1.0
									Misidentified $ au$	0.6
									$ au_{had}$ decay mode classification	0.3
Channel	Signal region	Decay mode combination	1	Selection criteria	Channel	Signal region	Decay mode combination	Selection criteria	π^0 angular resolution and energy scale	0.2
			$d^{sig}(a)$	$ > 2.5 \text{ or } d^{\text{sig}}(\omega) > 2.0$		88		$ d^{\operatorname{sig}}(\tau_1) > 1.5$	Track (π^{\pm} , impact parameter)	0.7
		ℓ –1p0n	$ a_0^{-}(e) $	$ > 2.5 \text{ of } a_0^{-1}(\mu) > 2.0$ $d^{\text{sig}}(\tau_{1,0,0}) > 1.5$			1p0n-1p0n	$ u_0^{(\tau_1)} > 1.5$ $ d_0^{\text{sig}}(\tau_2) > 1.5$	Luminosity	0.1
	High			$\frac{u_0}{1 + 25} = \frac{v^{\text{sig}}}{1 + 25}$		TT' 1		$ d_{\rm s}^{\rm sig}(\tau_{1\rm p0n}) > 1.5$	Theory uncertainty in $H \rightarrow \tau \tau$ processes	1.5
		ℓ–1p1n	$ a_0^{\circ}(e) $	$ > 2.5 \text{ or } a_0^{\circ}(\mu) > 2.0$ $ v^{\rho}(\tau_{1n1n}) > 0.1$		High	1p0n-1p1n	$ y^{\rho}(\tau_{1p1n}) > 0.1$	Theory uncertainty in $Z \rightarrow \tau \tau$ processes	1.1
			d ^{sig} (a)	$ > 2.5 \text{ or } d^{\text{sig}}(\omega) > 2.0$				$ v^{\rho}(\tau_{1})v^{\rho}(\tau_{2}) > 0.2$	Simulated background sample statistics	1.4
· lep · had		ℓ–1pXn	$ u_0\rangle$ (e)	$ v^{\rho}(\tau_{1nXn}) > 0.1$			1p1n–1p1n	$ y (r_1)y (r_2) > 0.2$	Signal normalisation	1.4
	Medium		$d^{\text{sig}}(a)$	$\frac{ \nabla 2.5 \text{ or } d^{\text{sig}}(u) > 2.0}{ \nabla 2.0 }$	$\frac{\tau_{\text{had}}}{ u > 2.0} \qquad \tau_{\text{had}} \tau_{\text{had}}$		1p0n–1pXn	$ d_0^{\text{sig}}(\tau_{1\text{p0n}}) > 1.5$	Background normalisation	0.6
		ℓ–3p0n	$ u_0(e) $	$ v^{a_1}(\tau_{3n0n}) > 0.6$				$ y^{p}(\tau_{1pXn}) > 0.1$	Total systematic uncertainty	5.2
	Low	All above	Not sat	isfying selection criteria		Medium	1p1n–1pXn	$ y^{\rho}(\tau_{1p1n})y^{\rho}(\tau_{1pXn}) > 0.2$	Data sample statistics	15.6
							1p1n-3p0n	$ y^{\rho}(\tau_{1p1n}) > 0.1$ $ y^{a_1}(\tau_{3p0n}) > 0.6$	Total	16.4
						Low	All above	Not satisfying selection criteria		

$d\Gamma_{H\to\tau^+\tau^-} \approx 1 - b(E_+)b(E_-)\frac{\pi^2}{16}\cos(\varphi_{CP}^* - 2\phi_{\tau})$

$H \rightarrow bb \operatorname{in} t\bar{t}H \operatorname{and} tHq$

$t\bar{t}H(\rightarrow bb)$ and $tH(\rightarrow b\bar{b})q$ Full Run-2 (140 fb⁻¹): setup

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{no-reco}^{\geq 4j,\geq 4b}$	_	$\Delta\eta_{\ell\ell}$
Dilepton (TR ^{$\geq 4j$, $\geq 4b$})	$CR^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	b_4
	$\mathrm{SR}_1^{\geq 4j, \geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$	b_4
	$\operatorname{SR}_2^{\geq 4j, \geq 4b}$	$BDT^{\ge 4j,\ge 4b} \in [0.186, 1]$	b_4
	$ $ CR ₁ ^{$\geq 6j, \geq 4b$}	BDT ^{$\geq 6j, \geq 4b$} $\in [-1, -0.128)$	b_2
ℓ +jets (TR ^{$\geq 6j, \geq 4b$})	$\operatorname{CR}_{2}^{\geq 6j,\geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-0.128, 0.249)$	b_2
	$\mathrm{SR}^{\tilde{\geq}6j,\geq4b}$	$BDT^{\geq 6j, \geq 4b} \in [0.249, 1]$	b_2
ℓ +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}

ICNFP 2024

Uncertainty source	$\Delta lpha$	[°]
Process modelling		
Signal modelling	+8.8	-14
$t\bar{t} + \ge 1b$ modelling		
$t\bar{t} + \ge 1b \text{ 4V5 FS}$	+23	-37
$t\bar{t} + \ge 1b$ NLO matching	+22	-33
$t\bar{t} + \ge 1b$ fractions	+14	-21
$t\bar{t} + \ge 1b$ FSR	+5.2	-9.9
$t\bar{t} + \ge 1b$ PS & hadronisation	+16	-24
$t\bar{t} + \ge 1b p_{\rm T}^{b\bar{b}}$ shape	+5.4	-4.6
$t\bar{t} + \ge 1b$ ISR	+14	-24
$t\bar{t} + \ge 1c$ modelling	+6.6	-11
$t\bar{t}$ + light modelling	+2.5	-4.7
<i>b</i> -tagging efficiency and mis-tag rates		
<i>b</i> -tagging efficiency	+8.7	-15
<i>c</i> -mis-tag rates	+6.7	-11
<i>l</i> -mis-tag rates	+2.3	-2.7
Jet energy scale and resolution		
<i>b</i> -jet energy scale	+1.6	-3.8
Jet energy scale (flavour)	+7.8	-11
Jet energy scale (pileup)	+5.2	-7.9
Jet energy scale (remaining)	+8.1	-13
Jet energy resolution	+5.7	-9.3
Luminosity	$\leq \pm$	-1
Other sources	+4.9	-8
Total systematic uncertainty	+41	-54
$t\bar{t} + \geq 1b$ normalisation	+8.2	-13
κ'_t	+17	-33
Total statistical uncertainty	+32	-49
Total uncertainty	+52	-73

- 73 _____
- 100