Beyond the Standard Model in the Higgs Sector

Simon Grewe on behalf of the ATLAS collaboration

ICNFP 2024

27.08.2024

simon.gabriel.grewe@cern.ch

MAX PLANCK INSTITUTE FOR PHYSICS

Introduction

- Besides its tremendous success the standard model has many shortcomings (often connected to the scalar sector)
 - Dark matter
 - Baryon asymmetries
 - Naturalness
- Many proposed solutions require an extended Higgs sector e.g.
 - SUSY
 - Axion models
- Simplest extension 2 Higgs doublet model:
 - Particle Content: H⁺,H⁻,h,H,A
 - Many more models adding additional singlets, doublet, triplets

No clear sign of BSM in the Higgs sector

Introduction

- Many searches for an extended Higgs sector have been performed by ATLAS : <u>public</u> results
- Related talks:
 - Exotic searches at ATLAS by Gökhan Ünel
 - ATLAS searches for non-minimal and long-lived SUSY scenarios by Risa Ushioda
 - <u>Search for Higgs boson production through resonance decays (CMS)</u> by Rainer Mankel
- Today: Selection of recent direct ATLAS searches for an extended Higgs sector in the full Run 2 Data set (140 fb⁻¹, √s=13TeV)
 - H⁺→cs
 - Н→аа→үүүү
 - H→aa→bbττ

H⁺→cs

- t→b H⁺→cs b
 - light H⁺[60, 168] GeV
- Light H⁺ dominant decay modes
 - H⁺→cs
 - H⁺→τν
 - (H⁺→cb) usually smaller than H⁺→cs due to CKM-Matrix

g

g

- Produced in tt decays
- 1 lepton +jets final state
- Uses simultaneous b and c tagging
 - Uses Pseudo-continuous flavor-tagging

H⁺→cs

- Mismodelling of dominant SM tt background is corrected by data driven method
- Reconstruct tt system
 - Solve the jet combinatorics by considering every permutation
 - Choose the permutation maximizing $PDF_{t-lep} \times PDF_{t-had}$
- BDT trained to distinguish between background signal

Correction are separately calculated for each jet multiplicity

H⁺→cs

- Fit BDT-score
- Dominant uncertainties: ٠
 - flavour tagging/MC stat. /tt modelling •
- No significant deviation above the SM expectation

Events 10

10

10⁴

10³

1.02

g 0.98 Dat

ATLAS

Post-Fit

Signal Region

15

- Set limits on BR(tt \rightarrow H⁺b)
- Largest deviation at 110 GeV(1.5 σ) •
- Currently strongest limits between 120-160 GeV
 - First direct limits for 60 70 & 168 GeV

h→aa→ɣɣɣɣ

- Search Higgs boson (125 GeV) decaying into 2 axion like particles a (ALP) decaying into 4 photons
 - 100MeV<m(a)<62 GeV
- Targets both **prompt**(short lived) and **non-prompt**(long lived) $a \rightarrow \gamma \gamma$ decays
 - Coupling $c_{ayy} < 10^{-5}$ decay outside ATLAS and are thus not probable
- Targets both **resolved** and **merged** $a \rightarrow \gamma \gamma$ decays
- For m(a) < 3.5 GeV strongly collimated di-photons pairs
 - Reconstrued as only one calo cluster/ photon
- Main Background: di-photon and non-resonant multijet

h→aa→ɣɣɣɣ

Standard photon identification is inefficient for merged photons →Custom merged photon ID based on Neural Networks was

developed

Event Categories:

- 1. Four reconstrued photons(4S)
- 2. Three reconstructed photons(3S)
- 3. Two merged photons(2M)
- One merged & One single photon(1M1S)
- 5. Two single photons(2S)

m^{reco} [GeV]

arXiv:2407.01335

$h \rightarrow aa \rightarrow bb\tau\tau$

- Higgs boson (125 GeV) decaying into 2 new light pseudoscalar a
- Events selected by single e/μ triggers $_{\odot}$ At least on leptonically decaying au_{lep}
- Categorize by the decay mode of the τ
- Main background: Z+jet, tt, τ_{had} fakes

DeXTer Tagger

- Identifies low p_T merged di-b jets(B), b-jets, light jets
- Uses reclustered R=0.8 track jets
- Utilizes secondary vertices ٠ and tracks information

Resolved for high m_a

Merged for low m_a

$H \rightarrow aa \rightarrow bb\tau\tau$

- Categories based on τ decay & the number of b/B-jets
- Missing Mass Calculator (MMC) is used to reconstruct the v momenta from $a{\rightarrow}\ \tau\tau$ decay
 - $_{\odot}$ Uses Markov chain to reconstruct most likely v momentum
- Mass parameterized Neural Network is trained to distinguish between background and signal

$H \rightarrow aa \rightarrow bb\tau\tau$

Summary Plot

tan β

 Interpretation of search results in the hMSSM framework

Large part of the parameter space excluded by extensive search program

Conclusion

- ATLAS has an extensive search program in the Higgs sector covering many models and final states
- So far **no** strong sign for an extended Higgs sector
- But there **is** Physics beyond the standard model and the Higgs sector is a promising place to search for it and ..
 - There will be a lot more data to explore
 - New analysis techniques to be utilized
 - New models/signatures to be tested

Backup

arXiv:2401.04742

4 lepton + E_T^{miss}/jets

- Search for new Resonance R/A decaying into a heavy Higgs boson H and a new Scalar S or Z boson
 - $S \rightarrow invisible$ (possible DM candidates)
 - $H \rightarrow ZZ$
- S mass fixed at 160 GeV
- In the context of 2HDM+Scalar models ($R \rightarrow SH$)
- Or benchmark model for baryogenesis ($A \rightarrow ZH$)
- 4 lepton + additional activity final state
 - Missing transverse momentum
 - Jets
 - Additional leptons

4 lepton + E_T^{miss}/jets

- Background estimation: Shape of the m_{4l} distribution is obtained from simulation using an parametrized empirical function fitted to data
 - $_{\odot}\,$ Main background: ZZ
 - Decreases statical uncertainties
- Require m_{4l}> 200 GeV
 - $_{\odot}$ 50 GeV<m_z<106/115 GeV
- Further cuts optimized to increase significance

Signal region	$R \to SH \to 4\ell + E_{\rm T}^{\rm miss}$ and $A \to ZH \to 4\ell + X$			
SR1		$n_{\rm jets} = 0$	$p_{\rm T}^{4\ell} > 20 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance >2.0
SR2	$n_{b-\text{jets}} = 0$	$n_{\rm jets} \ge 1$	$p_{\rm T}^{4\ell} > 10 {\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance > 3.5
SR3			$p_{\rm T}^{4\ell}$ < 10 GeV	$2.5 < E_{\rm T}^{\rm miss}$ significance < 3.5
	$A \to ZH \to 4\ell + X$			
SR4	$n_{b-\text{jets}} = 0$	$n_{\rm jets} \ge 2$	$ m_{jj} - m_Z < 20 \text{ GeV}$	
SR5			$ m_{jj} - m_Z > 20 \text{ GeV}$	
SR6	90/001	$n_{\rm jets} = 1$		
SR7	$n_{b ext{-jets}} \ge 1$			

4 lepton + E_T^{miss}/jets

- Fit the m₄₁ distribution
- No significant excess above the SM expectation
 - Largest deviation 2.5 σ for the A \rightarrow ZH \rightarrow 4I+X signal at (mA,mH)=(510,380) •

∑9¹³⁰⁰ 9¹²⁰⁰

E 1100

1000

900

800

700

600

500

400

300

400

500

ATLAS

700

600

H⁺→cs

Variable type Variable name		Definition			
Top-quark kinematic variables					
	$j_1 p_{\mathrm{T}}$	$p_{\rm T}$ of j_1 -labelled jet			
	$j_2 \; p_{ m T}$	$p_{\rm T}$ of j_2 -labelled jet			
	$b_{ m had} \; p_{ m T}$	p_{T} of b_{had} -jet			
<i>t</i> -	$b_{\rm had}^{t_{\rm had}-{\rm rest}} p$	Momentum of b_{had} -jet in t_{had} rest frame			
$\iota_{\rm had}$	dijet mass	Invariant mass of j_1+j_2 jets			
	(j_1+b_{had}) mass	Invariant mass of $j_1 + b_{had}$ jets			
	$(j_2+b_{\rm had})$ mass	Invariant mass of $j_2 + b_{had}$ jets			
	$\cos heta$	Boson spin sensitive variable			
	$b_{ m lep} p_{ m T}$	$p_{\rm T}$ of $b_{\rm lep}$ -jet			
<i>t</i> -	Lepton $p_{\rm T}$	$p_{\rm T}$ of reconstructed lepton			
$v_{ m lep}$	W mass	Invariant mass of reconstructed W boson			
	$t_{\rm lep}$ mass	Invariant mass of reconstructed $t_{\rm lep}$			
	$t_{ m lep} \ p_{ m T}$	$p_{\rm T}$ of reconstructed $t_{\rm lep}$			
tt-system	$\Delta R(b_{ m lep}, b_{ m had})$	ΔR between the b_{lep} -jet and b_{had} -jet			
	$t\overline{t}$ mass	Invariant mass of $t_{had} + t_{lep}$			
Event variables					
	$N_{ m jets}$	Number of jets in the event			
Event level	S_{T}	Scalar $p_{\rm T}$ sum of all calibrated objects			
	$P_{t\overline{t}}$	Normalised probability of correct jet labelling			
Flavour-tagging variables					
	$j_1 \text{ PCFT}$	PCFT score of j_1			
Flavour-tagging score	j_2 PCFT	PCFT score of j_2			
r havour bassing score	$b_{\rm had} \ { m PCFT}$	PCFT score of b_{had} -jet			
	$b_{\rm lep}$ PCFT	PCFT score of b_{lep} -jet			
	$N_{c-\mathrm{tagLo}}$	Number of jets passing loose c -tag WP (b -veto)			
Number of tags	$N_{c\text{-tagTi}}$	Number of jets passing tight c -tag WP (b -veto)			
	$N_{b-\mathrm{tag70}}$	Number of jets passing 70% <i>b</i> -tag WP			
	$\mid N_{b-{ m tag}60}$	Number of jets passing 60% <i>b</i> -tag WP ¹⁹			