

Study of Cs₂MCl₆ family (M = Hf or Zr) crystal scintillators in the search for rare processes in Hf and Zr isotopes

A. Leoncini^{1,2}, P. Belli^{1,2}, R. Bernabei^{1,2}, F. Cappella^{3,4}, V. Caracciolo^{1,2}, R. Cerulli^{1,2}, A. Incicchitti^{3,4}, M. Laubestein ⁵, V. Merlo^{1,2}, V. Nahorna⁷, S. Nagorny⁶, S. Nisi⁵, P. Wang⁷

- ¹ Dipartimento di Fisica, Università di Roma 'Tor Vergata', I-00133 Rome, Italy
- ² INFN Sezione di Roma Tor Vergata, I-00133 Rome, Italy
- ³ INFN Sezione Roma, I-00185 Rome, Italy
- ⁴ Dipartimento di Fisica, Università di Roma 'La Sapienza', I-00185 Rome, Italy
- ⁵ INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy
- ⁶ Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
- ⁷ Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada

Interest in studying the 2β and rare α decay

$$0\nu 2\beta^-: {}^A_Z X \to {}^A_{Z+2} Y + 2e^-$$

- Neutrino physics: Provides insights into the properties of neutrinos, including their mass and whether they are Majorana particles (particles that are their own antiparticles).
- To test, e.g., calculations of different nuclear shapes and the decay modes that involve the vector and axial-vector g_A weak effective coupling constants.
- Beyond Standard Model: Helps test theories beyond the Standard Model of particle physics, such as the presence of new particles or interactions.

$$\alpha: {}^{A}_{Z}X \rightarrow^{A}_{Z-2}Y + {}^{4}_{2}He$$

- Nuclear structure: Provides detailed information about the structure and stability of atomic nuclei.
- Nuclear Models: Helps refine theoretical nuclear models by providing empirical data on rare decay processes.
- Astrophysics: essential also for nuclear and particle astrophysics studies (α-capture reactions, β-delayed fission, nucleosynthesis).

Some general properties	Cs ₂ HfCl ₆	Cs ₂ ZrCl ₆
Effective atomic number	58	46.6
Density (g/cm ³)	3.9	3.4
Melting point (°C)	820	850
Crystal structure	Cubic	Cubic
Emission maximum (nm)	400 - 430	450 - 470
Scintillation time constants (µs)	0.4; 5.1; 15.2 *	0.4; 2.7; 12.5*
Light Yield	up to 30000 photons/MeV**	up to 41000 photons/MeV**
Linearity of the energy response	Excellent, down to 100 keV	Excellent, down to 100 keV
Energy resolution (FWHM, %) @ 662 keV	3.2 - 3.7***	3.5 - 7.0***
Pulse-shape discrimination ability	Excellent	Excellent
Mass fraction of isotope of interest (%)	27	16

The Cs₂HfCl₆ (CHC) and Cs₂ZrCl₆ (CZC) crystal scintillators

Produced at Queen's University

- * for alpha events at room
 temperature (Dalton Trans. 2022, 51,
 6944-6954)
- ** for gamma quanta at room temperature
- *** depends on the crystal quality, surface treatment and readout system

Low background measurements of the CHC and CZC crystals

measured with the ultra-low background **HP-Ge** γ spectrometers of the **STELLA** facility at LNGS.

[2] P. Belli et al. Eur. Phys.

J. A **59**, 176 (2023).

ie	Chain	Nuclid e	Activity (mBq/kg)			Maybe a cross-
ound			CHC	CZ	ZC [2]	contamination happened during the sample
of				Cone	Cylinder	preparation and
ty at			16.87 g	10.63 g	23.95 g	installation.
	²³⁸ U	²²⁶ Ra	<13	60(10) 🗲	< 8.7	
		²³⁴ Th	<1200	< 180	< 260	
		^{234m} Pa	<18	< 630	< 160	– Natural
	²³⁵ U	²³⁵ U	<18	< 16	< 12	
	²³² Th	²²⁸ Ra	<13	< 16	< 23	
		²²⁸ Th	<17	< 6.7	< 8.2	
Only						
land		¹³⁷ Cs	<10	< 7.1	< 1.6	Artificial
transportation!		¹³⁴ Cs	37(4)	49(6)	42(5)	Cosmogenic
1 _{1/2} ~ ∠ years		¹³² Cs	-	< 8.2	< 11	activation
S.		40K	<240	<120	<95	4

Cone

6000

FWHM =

4.1% @ 2.6MeV

Search for 2β decay in ^{94,96}Zr using CZC crystal scintillators

- \checkmark Run 1: 456.5 days of data taking (time-window 80 µs), July 2021 Oct 2022
- ✓ Run 2: 65 days of data taking (extended time-window for t-A analysis, 2 ms), Oct -Dec 2022

DAMA/CRYS setup at LNGS

200 Sounds

180

160

140

SumA [channels]

Experimental limits on various decay modes in ^{94,96}Zr isotopes

Transition	Decay mode	Final state of daughter nucleus, keV	Experimental limit on T _{1/2} at 90%C.L., yr
96 Zr \rightarrow 96 Mo	0ν2β	g.s.	>1.5×10 ²⁰
		2 ₁ +, 778	> 1.5×10 ¹⁹
	2ν2β	g.s.	> 7.4×10 ¹⁷
		2 ₁ +, 778	> 3.8×10 ¹⁷
	β	g.s.	> 1.0×10 ¹⁷
$^{94}\text{Zr} \rightarrow ^{94}\text{Mo}$	0ν2β	g.s.	> 2.6 ×10 ¹⁹
		2 ₁ +, 871	> 3.8×10 ¹⁸
	2ν2β	g.s.	> 2.4 ×10 ¹⁸
		2 ₁ +, 871	> 1.9×10 ¹⁷

See more details in Eur. Phys. J. A 59 (2023) 176 https://doi.org/10.1140/epja/s10050-023-01090-9

New low-background measurements in DAMA/CRYS setup (LNGS)

- ✓ Three new Cs₂ZrCl₆ crystals + one Cs₂HfCl₆
- ✓ Total mass of 3 CZC = 59.5 g, mass of CHC= 16.87 g.
- ✓ FWHM = 6-8% @ 662keV
- Produced from high purity and purified raw materials (> 99.99%)
- CZC crystals are encapsulated in a silicon-base resin + quartz window
- Modified experimental setup
- ✓ Measurements started on June 30th, 2023, for a total of 97.7 days live time

DAMA/CRYS setup at LNGS

Pulse Shape Discrimination (PSD) ability

The difference in scintillation pulse time profile for different type of particles allows for an effective pulse-shape discrimination.

The "mean-time" ($\langle t \rangle$) method [L.Bardelli et al., Nucl. Instr. Meth. A **584** (2008) 129]. was used, and this parameter was determined according to:

$$\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k)$$

where the sum is over the time channels (k), starting from the origin of pulse up to 24 μ s, f(t) is the digitized amplitude (at the time t) of a given signal.

Time-Amplitude analysis

- + Confirmation of ²³⁵U decay chain presence
- + Alpha peaks to precisely determine α/β ratio

Measured energy spectra of the 4 crystals

✓ Live time: 97.7 days✓ Counting rates:

	СНС	CZC - 1	CZC - 2	CZC - 3
α /kg/day	1616	173	2302	3548
eta/kg/day	46117	104303	43251	52292

Background model

⁴⁰K

< 2.3

< 1.1

11(2)

Contribution of external gammas from PMT's is dominant

17(3)

Search for the α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

Half-life of α decay of ¹⁷⁴Hf to the g.s. of ¹⁷⁴Yb

Area of 2^{nd} peak = $118 \pm 11(stat) \pm 35(sys) = 118 \pm 37$

Half-life:

$$T_{1/2} = \ln 2 \cdot N \cdot \epsilon \cdot t/S$$

- N (number of nuclides) = $\frac{M}{W} \cdot \delta \cdot N_A = 2.412 \times 10^{19}$
- ϵ is the PSD efficiency which corresponds to 99%;
- *t* is the measurement time (= 2344.8 h = 0.26767 yr);

M = 16.87 g; W(Cs₂HfCl₆) = 657 g/mole; $\delta(^{174}$ Hf) = 0.156(6) %

 $\Rightarrow T_{1/2} = [3.8^{+0.4}_{-0.3}(stat)^{+1.6}_{-0.9}(sys)] \times 10^{16} = 3.8^{+1.7}_{-0.9} \times 10^{16} \text{ yr of } \alpha \text{ decay of } ^{174}\text{Hf}$

Comparing with result in [*NPA 1002 (2020) 121941*]: $\frac{|3.8-7.0|}{\sqrt{(1.7)^2 + (1.2)^2}} = 1.5$ Theoretical predictions: $(3.5 - 7.4) \times 10^{16} yr$.

Perspectives and conclusions

- The blue band is the extrapolation of the predictions on T_{1/2} for all the Hf isotopes using the Geiger-Nuttall scaling law considering the data point observed in Ref. [1]NPA 1002 (2020) 121941.
- The red symbols represent the sensitivity that the measurement can reach using CHC crystal scintillators with 43.83 kg × day of total exposure.

First two Cs_2ZrCl_6 scintillating crystals have been grown in Queen's University and studied at the LNGS, Italy to search for 2β decay of ^{94,96}Zr isotopes [P. Belli et al. Eur. Phys. J. A **59**, 176 (2023)].

An experiment using a CHC crystal scintillator and three CZC crystal scintillators has been performed in the DAMA/CRYS setup at LNGS [P. Belli et al 2024 JINST 19 P05037].

>It has observed a decay of ¹⁷⁴Hf to the ground state with a $T_{1/2} = 3.8^{+1.7}_{-0.9} \times 10^{16}$ yr. This value is in good agreement with the theoretical predictions.

A new experiment is ongoing with 4 CHC crystals (\emptyset 26 ×20 mm³) encapsulated in silicone-base sealeant.

>We are hoping in 1 year of data taking to improve limits also for 2ϵ and $\epsilon\beta^+$ decay of ¹⁷⁴Hf and α decay in the naturally occurring Hf isotopes.

BACKUP SLIDES

Simplified decay schemes of naturally occurring Hf isotopes

 α decays of Hf isotopes considering the first two excited energy levels of the daughter nuclei. Energies of the excited levels and of the emitted γ quanta are shown. Relative probabilities of a single energy level are given in parentheses. The ¹⁷⁵Yb isotope decays via β^- with T_{1/2} = 4.185(1) d, while all the other Yb nuclei are stable.

Search for 2β decay in ^{94,96}Zr and for ⁹⁶Zr's β decay

Experiment	Transition	T _{1/2}	Technique	Ref.	Decouracheme of ⁹⁴ 7r
		90% C.L. (y)			Decay scheme of * 2r
ZICOS, (Kamioka	⁹⁶ Zr 0 ⁺ → ⁹⁶ Mo 0 ⁺ 1	under	Organic liquid	[1]	
Observatory, Japan)	(g.s.)	construction	scintillator		$6^{$
NEMO I, II, III, Frejus	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 0⁺ ₁	>9.2×10 ²¹	Tracker	[2]	a + 0
(France)	(g.s.)	>1.29×10 ²²	detector	[3]	$0 \frac{2^{+}}{2r} 871$
(next: SuperNEMO)					871.1 keV
Kimballton Underground	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 2⁺ ₁	>3.1×10 ²⁰	HP-Ge	[4]	
Research Facility, (USA)					$Q_{2\beta} = 1.144 \text{MeV}$ $0^{+} {}_{94} {}_{Mo}$
Collaboration at Fréjus	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 2⁺₁,	>(2.6 – 7.9) ×10 ¹⁹	HP-Ge	[5]	
Underground Laboratory	0 ⁺ ₁ , 2 ⁺ ₂ , 2 ⁺ ₃	х <i>,</i>			β and 2β decay of ⁹⁶ Zr. The decay Q-values and excitation energies of the first three states of Nb are also indicated.
Collaboration at LNGS	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 2⁺ ₁	>3.8×10 ¹⁹	HP-Ge	[6]	0^{+} 0.000 (4 ⁺) 0.146 $Q = 0.017 MeV$
TILES (TIFR, Mumbai)	⁹⁴ Zr 0⁺→ ⁹⁴ Mo 2⁺ ₁	>5.2×10 ¹⁹	HP-Ge	[7]	$Q = 0.163 \text{ MeV}$ $\xrightarrow{(5^+)}_{6^+}$ $\xrightarrow{0.044}_{96_{\text{Nb}}}$ $Q = 0.119 \text{ MeV}$
Kimballton Underground	⁹⁶ Zr 0⁺→ ⁹⁶ Mo 6⁺	>2.4×10 ¹⁹	HP-Ge	[8]	no
Research Facility, (USA)					Q = 3.187 MeV
 [1] EPS-HEP (2019) 437 [2] NPA 847 (2010) 168 [3] PhD U. Coll. London (2015) [4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501 [5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487 [6] C. Arpesella et al. Lett. 27 (l) (1994) pp. 29–34 [7] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104 [8] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806(2016)70–74 [9] J. Heeck and W. Rodejohann 2013 <i>EPL</i> 103 32001 				$\begin{array}{c c} & & & & \\ \hline \\ \hline$	