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Jets in vacuum

Collimated sprays of particles,
proxies for hard scattered partons

Produced by parton showering
explained by perturbative QCD

Reconstructed by clustering final
state particles after hadronization
(non-perturbative)
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Jets in medium

Medium
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Jets in medium

Medium

Inelastic collisions

Elastic collisions

Elastic and inelastic collisions with
medium particles leads to
modification of jet properties
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Jets in medium

Medium

Inelastic collisions

Elastic collisions

Energy loss:STAR, Phys.Rev.C 102 (2020) 5

Jet broadening: CMS, Phys. Lett. B 730 (2014) 243

CMS, 𝐬𝐍𝐍 = 2.76 TeV pp, PbPb
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The STAR detector

Time Projection Chamber (TPC)

Reconstructs charged particle
tracks
|η| < 1, 0 < ϕ < 2π
PID using dE/dx

Time of Flight (TOF)

PID using TOF measurements
|η| < 1, 0 < ϕ < 2π

Barrel Electromagnetic Calorimeter
(BEMC)

Measures neutral component of
jet energy
|η| < 1, 0 < ϕ < 2π
Used to trigger high energy events

Heavy Flavor Tracker (HFT,
2014-2016)

Improves position resolution for
secondary vertices
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Jets in vacuum

September 3, 2024 5 / 21



Time evolution of jets, from partons to hadrons

Normalized EEC = 1∑
Jets

∑
i ̸=j

Ei Ej

pT,Jet
2

d

(∑
Jets

∑
i ̸=j

Ei Ej

pT,Jet
2

)
d(∆R)

Formation time: tf ∝ 1
(∆R)2 (Apolinário, Cordeiro, & Zapp EPJC 81 (2021))

∆RTurnover × pT,Jet ≈ 2− 3 GeV, independent of pT,Jet

Universal energy scale for hadronization

In perturbative (Quark/Gluon) region, next-to-leading log pQCD calculations
explain EECs
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Separating pQCD and npQCD in vacuum

zg =
min (pT,1, pT,2)

pT,1 + pT,2
> zcut (Rg/Rjet)

β

for zcut = 0.1 and β = 0, zg > 0.1 and
Rg is the distance of subjets at split

SoftDrop: Reduce wide-angle, soft
radiation from reconstructed jets
(Larkoski, A.J., Marzani, S., Soyez, G. et al. Soft drop. J. High

Energ. Phys. 2014, 146 (2014))

CollinearDrop: Soft component
of given jet observable (O).
∆O = O −Og (Chien, YT., Stewart, I.W. Collinear

drop. J. High Energ. Phys. 2020, 64 (2020))
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Separating pQCD and npQCD in vacuum

Perturbative: Larger Rg =⇒ Smaller ⟨∆M/M⟩ =⇒ Steeper zg

Non-perturbative: Smaller Rg =⇒ Larger ⟨∆M/M⟩ =⇒ Flatter zg

PYTHIA8 Detriot tune and HERWIG7 LHC tune explain ∆M/M
distributions from data
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Probing npQCD region in vacuum

rc(X ) =
dσh1h2/dX − dσhh1h2

/dX

dσh1h2/dX + dσh1h2
/dX

h1h2: same charge hadrons, h1h2:
opposite charge hadrons

rc measures fraction of “string-like
hadronization”

baseline for studying medium
modification of hadronization

Chien, Deshpande, Mondal, Sterman, PRD 105 (2022) 5, L051502

tform = z(1− z)p/k2
T

where, p = ph1 + ph2 , and z = ph2/p
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Probing npQCD region in vacuum

First measurement in p+p: Both
string-like and cluster hadronization
underpredict STAR data

More model tuning required
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Jets in medium

Medium

Inelastic collisions

Elastic collisions
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Jet substructure in medium

λκ
β =

∑
const∈jet

soft/hard radiation︷ ︸︸ ︷(
pT,const

pT,jet

)κ

×

collinearity sensitive︷ ︸︸ ︷
r(const, jet)β

λ0
0 = Nconstit., λ

1
1 = g (girth),

λ1
2 = thrust,

√
λ2
0 = pDT

β, κ control sensitivity to
energy and angular scales

Probe modification of radiation
pattern in medium
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Jet substructure in medium

λκ
β =

∑
const∈jet

soft/hard radiation︷ ︸︸ ︷(
pT,const

pT,jet

)κ

×

collinearity sensitive︷ ︸︸ ︷
r(const, jet)β

Girth consistent within
systematic uncertainties
between central, peripheral
collisions

Better estimates of systematic
uncertainties ongoing
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Hadron chemistry in jet cones

Correlated backgrounds:
Upward fluctuation into real jets removed
using “pseudo-embedding” p+p events
into a random central Au+Au events
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Hadron chemistry in jet cones

Correlated backgrounds:
Any residual jet - Au+Au hadron
correlation → bias towards upward
fluctuation
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Hadron chemistry in jet cones

Correlated backgrounds:
Combinatorial jets (jets clustered from
low pT tracks, no hard processes)
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Hadron chemistry in jet cones

Correlated backgrounds:
Simulated by clustering randomly
sampled tracks from separate events
(Mixed Constituent Event)
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Hadron chemistry in jet cones

p/π ratio suppressed inside jet
cones compared to inclusive p+p

No significant difference in Au+Au
p/π ratio compared to p+p
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Flavour dependence - D0 jets

zJet =
p⃗T,Jet·p⃗T,D0

|p⃗T,Jet|2
, Low/High zJet → soft/hard-fragmented D0 jet
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Flavour dependence - D0 jets
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Flavour dependence - D0 jets

LIDO, Phys. Rev. C 98, 064901
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LIDO predicts flat RCP, which agrees
with data for D0 jets with highest zJet
(hardest-fragmented)
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Outlook
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Outlook

Increased statistics for jet
substructure measurements

Access to high pT jets and wide
angle radiation

Increased angular resolution
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Outlook

Wider kinematic range for IAA

(current results:
https://arxiv.org/abs/2309.00156)
and acoplanarity measurements

Larger statistics → Improved
uncertainty
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Outlook

HERWIG tune to RHIC kinematics ongoing

Jet chemistry in unbiased sample (constituent pT dependence)

Generalized angularities for D0-jets

Higher order EECs, charge dependence, medium modifications
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Summary

Precision era of jet
substructure

Medium modification of
jets
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Backups
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γ+jet and π0 + jet measurements

How does the jet energy move around during propagation in medium?

Significant medium-induced
recoil jet yield suppression
for R = 0.2 compared to 0.5

Evidence of significant
medium-induced intra-jet
broadening at angular scales
less than 0.5 radians

Short paper arXiv: 2309.00156 [nucl-ex] Long paper arXiv: 2309.00145 [nucl-ex]
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γ+jet and π0 + jet acoplanarity

For R=0.5, observed excess
yield toward ∆ϕ ≈ π/2 in
AuAu

For R=0.2, observed jet
yield suppression at all ∆ϕ
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Event shape engineering

Charged particle spectra from TPC,
q2 from EPD-W to avoid
autocorrelation

Correlation between q2 and
centrality, but broad distribution of
q2 in each centrality bin
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Event shape engineering

Charged particle spectra harder in
high-q2 events, flattened at high pT

Consistent with ALICE results at
2.76 TeV
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