

Tests of LFU and searches for LFV in heavy flavor decays at CMS

Marco Buonsante^[1]

On behalf of the CMS Collaboration

^[1] Università & INFN, Bari

ICNFP 2024 Kolymbari (Greece) 28/08/2024

Overview

NFN

Lepton Flavour Violation (LFV):

- Standard Model (SM) → no principle that ensures lepton flavor conservation
 - Observation of neutrino oscillation
 - Charged LFV processes still strongly suppressed $O(10^{-55})$
- Extensions to the SM → predict a much higher BRs, which can be tested in current experiments
 - Expected values: $\mathcal{O}(10^{-10}) \mathcal{O}(10^{-8})$

Lepton Flavour Universality Violation (LFUV):

- Standard Model (SM) → different generations of leptons (e, μ, τ) have the same couplings to gauge bosons;
- Beyond Standard Model (BSM) → Alter the branching fractions differently for each lepton species.

Charged LFV only via loop diagrams with neutrino oscillation

Overview

Run2 results obtained by CMS:

- Possible thanks to the powerful CMS trigger system
 - (ex. B-Parking)

In this presentation:

- Search for $\tau \rightarrow 3\mu$ decay [Phys. Lett. B 853 (2024) 138633]
- Measure of R(K) ratio [Rep. Prog. Phys. 87 (2024) 077802] LF
- Measure of $R(J/\psi)$ ratio:

INFN

- Leptonic channel [arXiv.2408.00678]
- Hadronic channel [CMS-PAS-BPH-23-001]

Marco Buonsante - ICNFP 2024 - 28/08/24

Search for $\tau \rightarrow 3\mu$ decay

Motivations:

NFN

- The SM allows charged LFVs through neutrino oscillation, but with small BRs
 - $\mathcal{B}(\tau \to 3\mu) \sim \mathcal{O}(10^{-54})$ [Eur. Phys. J. C (2020) 80:438]
- Extensions to the SM predict a much higher BRs
 - Expected values: $\mathcal{B}(\tau \rightarrow 3\mu) \sim \mathcal{O}(10^{-8})$ [JHEP10(2018)148]
- Best result achieved so far:
 - $\mathcal{B}(\tau \to 3\mu) < 1.9 \cdot 10^{-8} @ 90\%$ C.L. by Belle II [arXiv.2405.07386] (2024)

Analysis strategy:

- 2017-2018 p-p collisions at 13 TeV (97.7 /fb) with a dedicated trigger for each channel of the analysis:
 - Heavy flavour (HF): tau from decays of B and D mesons
 - W: tau from decay of the W boson
- Signal Candidates: 3 muons at charge ±1 selected by the trigger + offline selections (common vertex, reconstruction quality, invariant mass)
- Background rejection:
 - Vetoes on resonances $\phi \rightarrow \mu\mu$ and $\omega \rightarrow \mu\mu$
 - MVA to suppress fakes developed specifically for the HF channel
 - BDT for suppression of combinatorial background
- Event categorization based on the invariant mass resolution
 - 3 categories per year and per channel

LFV

[Phys. Lett. B 853 (2024) 138633]

INFŃ

Results:

- Signal extracted from maximum likelihood fit of the invariant mass of the 3 muons for each category
 - HF: (gaussian + crystalball) + exponential
 - W: gaussian + polynomial
- Observed (expected) upper limit @ 90% C.L.
 - $\mathcal{B}(\tau \to 3\mu) < 3.1(2.7) \cdot 10^{-8}$ with 2017/2018 data
- Combination with the 2016 result [JHEP01(2021)163]
 - $\mathcal{B}(\tau \to 3\mu) < 2.9(2.4) \cdot 10^{-8} @ 90\% \text{ C.L.}$

Current world best limit: $B(\tau \rightarrow 3\mu) < 1.9 \cdot 10^{-8} @ 90\%$ C.L. by Belle II [arXiv.2405.07386] The **best result** obtained with a hadronic collider!

LFV

Test of LFU in $B^{\pm} \rightarrow K^{\pm}l^{+}l^{-}$ decays

Motivations:

- The SM allows for $\overline{b} \to \overline{s} \ l^+ l^-$ only via loop diagrams
 - FCNC transition \rightarrow very small BR: $\mathcal{O}(10^{-7})$
 - Fully reconstructed final state
 - SM prediction: $R(K) = \frac{BR(B^{\pm} \to K^{\pm} \mu^{+} \mu^{-})}{BR(B^{\pm} \to K^{\pm} e^{+} e^{-})} = 1.00 \pm 0.01 \frac{[\text{Eur. Phys. J. C}}{76, 440 (2016)]}$
- BSM physics could modify the BRs differently for different lepton species
 - Example: via a leptoquark with flavor-dependent couplings
- Best results achieved so far:
 - $R(K) = 0.949^{+0.047}_{-0.046}$ by LHCb [Phys. Rev. D 108 (2023) 032002]
 - $R(K) = 1.03^{+0.28}_{-0.24}$ by Belle [JHEP 03 (2021) 105]

 $B^{\pm} \rightarrow K^{\pm}l^{+}l^{-}$ in BSM theory that introduces a leptoquark (LQ) with flavor-dependent couplings

LFUV

Test of LFU in B^{\pm} \rightarrow K^{\pm}l^{+}l^{-} decays

Analysis strategy:

NFN

- 2018 p-p collisions at 13 TeV (41.6 /fb) collected with the B-parking technique. Two channels:
 - $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-} \rightarrow 1\mu$ selected from the HLT (tag side) + 1 OS μ in the muon system acceptance
 - B[±] → K[±]e⁺e⁻ → probe side of the HLT, 2 Particle Flow (PF) electrons <u>or</u> 1 PF + e identified by a **dedicated** low-p_T electron ID (LP)
 - Both channels: Loose selections on common vertex, reconstruction quality, invariant mass

Goal:
$$R(K) = \frac{BR(B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-})}{BR(B^{\pm} \rightarrow K^{\pm}J/\psi(\rightarrow\mu^{+}\mu^{-}))} / \frac{BR(B^{\pm} \rightarrow K^{\pm}e^{+}e^{-})}{BR(B^{\pm} \rightarrow K^{\pm}J/\psi(\rightarrow e^{+}e^{-}))}$$

$$a \quad 3 \quad q^{2} \text{ regions per channel:} \qquad background rejection:$$

$$Background rejection:$$

$$Backg$$

• Suppressed via BTD.

10

BDT score

5

Background

Marco Buonsante - ICNFP 2024 – 28/08/24

9

Test of LFU in $B^{\pm} \rightarrow K^{\pm}l^{+}l^{-}$ decays

Results:

INFN

Signal is obtained via maximum likelihood fit of the $m(Kl^+l^-)$ invariant mass. R(K) is measured to be:

 $R(K) = 0.78^{+0.46}_{-0.23}(stat)^{+0.09}_{-0.05}(sys)$

Compatible within 1σ with the SM

• Hadronic channel: $\tau \rightarrow \pi \pi \pi$

[PhysRevLett.125.222003]

 $\overline{\mathbf{c}}$

Test of LFU in B_c^+ \rightarrow J/\psi l^+ v_l decays

Motivations:

- The SM allows for $b \rightarrow c \ l^- \nu_l$ at tree level
 - Very large BR
 - Missing energy (neutrino in final state)

• Precise prediction: $R(J/\psi) = \frac{BR(B_c^+ \rightarrow J/\psi \tau^+ \nu_{\tau})}{BR(B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu})} = 0.2582 \pm 0.0038$

- BSM physics could modify this ratio [Phys. Rev. D 92, (2015) 054018]
- Best result achieved so far:
 - $R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(sys)$ by LHCb [Phys. Rev. Lett 120 (2018) 121801]
- At CMS, two possible channels (depending on τ decay)
 - Leptonic channel: $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$

LFUV

Marco Buonsante - ICNFP 2024 – 28/08/24

Test of LFU in $B_c^+ \rightarrow J/\psi l^+ \nu_l$

Analysis strategy:

- 2018 p-p collisions at 13 TeV (59.7 /fb) collected with a dedicated trigger
 - $B_c^+ \rightarrow J/\psi(\rightarrow \mu\mu) \tau^+(\rightarrow \mu^+ \nu_\mu \nu_\tau) \nu_\tau$ (NUM) and $B_c^+ \rightarrow J/\psi(\rightarrow \mu\mu) \mu^+ \nu_\mu$ (DEN) with **3** μ + **1** or **3** ν in the final state
 - Online selections: 2 OS μ compatibile with J/ ψ + 1 μ (p_T > 5, 3, 0 GeV and $|\eta| < 2.5$)
 - Offline selections: impact parameter, reconstruction quality, invariant mass (of J/ψ and B_c^+), vertex probability
- Background sources:

INFŃ

- $H_b \rightarrow J/\psi + \mu$ (or combinatorial muon)
- $B_c^+ \rightarrow J/\psi$ + charmed hadrons
- Fake muons: $J/\psi(\rightarrow \mu\mu)$ + misidentified hadron (K or π)
- Combinatorial $\mu\mu$ (in J/ψ mass range)
- Categorization (7 categories x 2 (muon isolation cut)) based on:
 - $q^2 = (p_{B_c^+} p_{J/\psi})^2$ Significance of $dis(J/\psi vtx, BS)$ in the transverse plane
 - 3D IP significance
 3µ mass

LFUV

Leptonic Channel

Ē

Events /

 10^{3}

10²

10

Data/exp

Test of LFU in B_c^+ \rightarrow J/\psi l^+ v_l

Results:

From the maximum likelihood of each category

the following ratio is obtained:

 $R(J/\psi) = 0.17^{+0.18}_{-0.17}(stat)^{+0.21}_{-0.22}(sys)^{+0.19}_{-0.18}(theo)$ [arXiv.2408.00678]

Compatible within 0.3 σ with the SM prediction and within 1.3 σ with the LHCb results^{*}

 $L_{xy}/\sigma_{L_{xy}}$ distribution for a background like category: $m(3\mu) > m_{B_c}$

LFUV

b barvons

59.7 fb⁻¹ (13 TeV)

 $R(I/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(sys)$ [Phys. Rev. Lett 120 (2018) 121801]

Leptonic Channel

bin 4000 CMS

B mesons

59.7 fb⁻¹ (13 TeV)

Other $B_{a}^{+} \rightarrow (c\overline{c}) \mu^{+} \nu_{\mu}$

 $3^+_{a} \rightarrow J/\psi u^+ v_{...}$

 q^2 distribution for the signal-

enriched category:

 $m(3\mu) < m_{B_c} \& q^2 > 5.5 \text{ GeV}^2$

& IP3D/ σ_{IP3D} > 2

Test of LFU in $B_c^+ \rightarrow J/\psi l^+ \nu_l$

Goal: $R(J/\psi) = \frac{BR(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{BR(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$ Where $\tau \to \pi \pi \pi \overline{\nu_{\tau}}$ From the previous analysis

Analysis strategy:

- 2016-2018 p-p collisions at 13 TeV (138 /fb):
 - Online selections: 2 OS μ compatibile with J/ ψ + 1 track
 - Offline selections: 3 tracks with common vtx displaced wrt PV and 3(trk mass)<1.7GeV
- Background sources:

INFN

- $H_b \rightarrow J/\psi + X$ (main bkg)
- $B_c^+ \rightarrow J/\psi$ + charmed hadrons
 - Mainly $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

- Background rejection via BDT:
 - 18 input variables related to the kinematics of the B-meson, τ candidate and global event-level observables.

LFUV

Hadronic Channel

13

Test of LFU in $B_c^+ \rightarrow J/\psi l^+ \nu_l$

- Estimate $H_b \rightarrow J/\psi + X$ bkg with a data driven method.
 - In signal channel: $\tau \rightarrow \pi \pi \pi$ mainly due to intermediate $\rho(770) \rightarrow \pi \pi$
 - Define ρ_1 and ρ_2 as the 2 possible OS π combinations
 - Estimation via simultaneous fit of SB, SR and leptonic data channel

Results:

INFN

- $R(J/\psi)$ obtained via simultaneous fit with the leptonic τ analysis $R(J/\psi)_{had} = 1.04^{+0.50}_{-0.44}$
- Combining with the leptonic channel: $R(J/\psi) = 0.49 \pm 0.25(sys) \pm 0.09(stat)$
 - Consistent with the SM prediction within 1σ. [CMS-PAS-BPH-23-001]

Hadronic Channel

Conclusions

Recent CMS results on searches for LFV and LFUV

LFV Search for $\tau \rightarrow 3\mu$

- Best result obtained at a hadron collider
- Still limited by statistics
- **LFUV** mesure of R(K) and R(J/ψ)
- Both compatible with SM within 1 σ
- CMS results compatible with those from machines designed for B-physics

Thanks for your attention!

The LHC is a τ factory:

Two main sources of τ leptons at the LHC:

- Heavy Flavour (HF) channel (~ 99.9 %)
 - Low p_T and high $|\eta|$
 - Sensitive to the presence of K and π mis-identified as muons
- W channel (~ 0.01 %)
 - High p_T and low $|\eta|$

Process 1	Process 2	No. of τ for
$pp \rightarrow c\bar{c} + \dots$	$D \to \tau \nu_{\tau}$	$11.8 \cdot 10^{1-2}$
	$(95\% \; D_s, 5\% \; D^{\pm})$	
$pp \rightarrow b\bar{b} + \dots$	$B \to \tau \nu_{\tau} + \dots$	$5.45\cdot 10^{12}$
	$(44\% \; B^{\pm}, 45\% \; B^0, 11\% \; B^0_s)$	
	$B \to D(\tau \nu_{\tau}) + \dots$	$1.86\cdot 10^{12}$
	$(98\% \; D_s, 2\% \; D^{\pm})$	
$pp \rightarrow W + \dots$	$W \to \tau \nu_{\tau}$	$1.99\cdot 10^9$
$pp \rightarrow Z + \dots$	$Z \to \tau \tau$	$3.86 \cdot 10^8$

* Refers to the number of τ expected for an integrated luminosity of 97.7 fb^{-1}

Event categorization:

Data and MC are divided into three categories based on the resolution of the invariant mass:

$$\sigma_m/m = \frac{\sqrt{\sum_{i=1}^3 (m(\delta \tau_i) - m(\tau))^2}}{m(\tau)}$$

where
$$\delta \tau_i = (p_{Ti} + \delta p_{Ti}, \eta_i, \phi_i, m_i) + \sum_{j=1, j \neq i}^3 (p_{Tj}, \eta_j, \phi_j, m_j)$$

$$A. \quad \frac{\sigma_m}{m} < 0.7\%$$

INFN

B.
$$0.7\% \frac{<\sigma_m}{m} < 1.1\%$$

C.
$$\sigma_m/m > 1.1\%$$

These regions are related to the pseudorapidity of muons in the final state and reflect the geometry of the internal tracker that dominates the resolution on the p_T for low- p_T muons

B-Parking dataset :

Collected from single muon triggers

Test of LFU in B^{\pm} \rightarrow K^{\pm}l^{+}l^{-} decays

- Rate that increases in steps as the rate of the Physics Stream decreases
- The B-parking dataset contains ~10 billion unbiased decays of hadrons containing b quarks
- Integrated luminosity equal to 41.5±1.0
 fb⁻¹

Tag-side: b→µX

Signal-side: unbiased b hadron decays

CMS.

INFN