

Rosamaria Venditti University and INFN, Bari

On behalf of the CMS Collaboration

XIII International Conference on New Frontiers in Physics Aug 26, Sep 4, Kolymbari, Crete, Greece

Towards HL-LHC

Towards HL-LHC

HL-LHC: challanging data taking conditions

- Detector operations
- event reconstruction
- particle densities x5-10
- \rightarrow Radiation damage x10

Requirements for experimental apparatus

- Increased detector granularities
- Significant use of (fast) timing
- Radiation hardness

HL-LHC Physics Motivation

- Precisely test the Standard Model, including Higgs boson
- \rightarrow Searches for rare processes H \rightarrow cc, HH

O(few %) reached on SM couplings

Extrapolation of Run2 analyses (35.9 fb-1) 2.6 sigma expected significance on HH **95% CL intervals for k_{\lambda}: [-0.18,3.6]**

HL-LHC Physics Motivation

Present LHC has excluded large part of the natural SUSY parameter space

- Gaugino masses O(few*100 GeV)→small production cross sections, accessible to HL-LHC
- Hunt for exotic processes, including dark matter
- Full luminosity needed for evidence of new physics

CMS Phase II Upgrades

<image>

Tracker

- Increased granularity
- Extended coverage to ~ | 4 |
- Designed for tracking in L1T

New MIP timing detector

- 30 ps timing resolution
- Full coverage to $|\eta| \sim 3$

New High-Granularity Endcap Calorimeter (HGCAL)

- Imaging calorimeter
- 3D showers and precise timing

Muon System

- Extended coverage to ~ [3]
- Additional station with improved spatial and time resolution

Level 1 Trigger

- latency: 12.5 µs
- 750 kHz output
- 40 MHz data scouting

HLT

- Heterogeneous architecture
- 60 TB/s event throughput
 - 7.5 kHz HLT output

CMS-PAS-TDR-15-002

Electronics Upgrades

- On/off-detector ECAL, HCAL, Muon Detectors
- 40 MHz continuous readout

CMS Phase II tracker project

Requirements:

- Radiation hardness: Max fluence up to O(10¹⁶) n_{ea}/cm²
- Preserve >= 98% efficiency
- Preserve spatial resolution
- Increased granularity: 1200 tracks / unit of η
- Reduced material: Preserve calorimetric resolution
- Contribution to the L1 trigger

CMS Phase II inner tracker

- Cover a total surface of 4.9 m² 2x10^9 channels
- Barrel: 4 silicon pixel layers
- Endcap: 2x8 small + 2x4 pixel large silicon pixel disks
- n in p silicon, 25x100 µm²
 - 3D (innermost)
 - Planar (elsewhere)
- New Front-end ASIC in 65 nm CMOS technology (CROC), common R&D with ATLAS

CMS Phase II outer tracker

- Cover a total surface of 218 m² 174 million macropixels
- Barrel: 6 layers of pT modules
- Endcap: 2x5 disks of pT modules
- pT modules: 2 layers of n-in-p silicon
 - 2S: 2 super-imposed strip sensors (90 µmx5cm)
 - PS: Macro-pixel sensor (100µmx1.5cm)

 p^{T} module \rightarrow provide stubs compatible with tracks p^{T} >2GeV for L1 trigger rate reduction

CMS Phase II tracker performance

Improvement on tracking efficiency and vertexing, thanks to high granularity even with challenging HL-LHC data taking conditions

Silicon modules performance

doi/10.22323/1.449.0578

Pixel prototypes

- Single chip assemblies irradiated at CERN
- Performance measured with test beam at DESY
- Hit efficiency > 98% for high irradiation
- Spatial resolution below the singlepixel cluster limit→7.2 µm (r-φ)

pT modules prototypes

- More than 60 modules built across the various production centers
- Expected performance confirmed

CMS High Granularity Calorimeter

- Highly granular sampling calorimeter in endcaps
- 3D shower reconstruction and precise timing \rightarrow
- Designed for Particle Flow reconstruction
- ECAL (CE-E):
 - Silicon sensors
 - Cu, CuW, and Pb absorbers
 - 26 layers, $X_0{=}25$ and $\lambda_N{=}1.3$
- HCAL (CE-H):
 - Silicon sensors and scintillating tiles with SiPM readout
 - Stainless steel absorbers
 - 21 layers, λ_N =8.5

CMS HGCAL

Akgün talk

overview in B.

CMS High Granularity Calorimeter

Results from test beam prototypes

- Energy resolution compatible with the present one for both ECAL and HCAL
 Machine learning reconstruction improves the performace
- ✓ 16 ps time resolution \rightarrow 5D shower reconstruction
- Unique opportunity to employ modern computing technologies for jet reconstruction and particle ID
 - Heterogeneous computing
 - Machine learning Use of Convolutional Neural Networks

CMS HGCAL overview in B. Akgün talk

Energy resolution HGCAL CE prototype

Energy resolution HGCAL CH prototype HGCAL prototype Shower time resolution

MIP Timing Detector (MTD) CMS-PAS-TDR-19-002

Requirements

- HL-LHC beam spot rms $\mathcal{O}(5 \text{ cm}) \Rightarrow$ spaceoverlapping vertices can be separated in time by hundreds of ps
- Measure the production time of minimum ionizing particles is crucial

\rightarrow MTD with time resolution of O(tenths ps)

- Disentangle pile-up by using timing information
- Improved tracking and vertexing
 - Particle identification from time of flight
 - Unique potential for Long-Lived Particles

Barrel (BTL)	Endcap (ETL)
η <1.45	1.6 < η < 3
LYSO:Ce + SiPM	Low Gain Avalanche Diode (16x16)
TOFHIR readout ASIC (high gain + noise filter)	ETROC readout ASIC single TDC measuring Time Of Arrival and Time Over Threshold

R. Venditti-CMS Upgrades

LYSO+SiPA

BTL:

MIP Timing Detector

- **BTL:** resolution stay within expectation after irradiation
- ETL: LGAD irradiated with β Sr90 source, Target performance achievable by increasing voltage

Detector prototype performance

CMS Phase II Muon System

New stations to increase coverage, improve momentum resolution, trigger and track reconstruction

Phase II Muon System motivations

Recover L1 trigger efficiency wrt Phase 1

Reduce L1 endcap trigger rate wrt Phase 1

Sensitivity new phyisics, e.g. heavy stable charged particles

> Muon system overview in G. Pugliese talk

R. Venditti-CMS Upgrades

Improved RPC for RE3/1 RE4 / 1

- Reduced gap thickness and resistivity → improvement in spatial and time resolution
- Double readout in the strips high and low radius

	RPC	irpc
HPL thickness (mm)	2	1.4
Gas gap thickness (mm)	2	1.4
Resistivity (Ωcm)	1 - 6 x 10 ¹⁰	0.9 - 3 x 10 ¹⁰
Charge threshold (fC)	150	30 - 40
<mark>Space resolution in η (cm)</mark>	20 - 28	1.5
<mark>Space resolution in φ (cm)</mark>	0.8 - 1.9	0.3 - 0.6
Intrinsic timing resolution (ns)	1.5	0.5

Summary

- Full luminosity needed for the most extensive searches and most precise measurements →Elucidation of the EWSB and of the Higgs boson characteristics
- The HL-LHC conditions will be the harshest to date
- Phase II CMS upgrades targets <u>fast timing</u>, <u>high granularity</u>, <u>radiation hardness</u>
- Main CMS experimental apparatus upgrades
 - New generation of silicon sensors for tracking systems
 - New Timing layer \rightarrow LYSO and LGAD technologies
 - 5D calorimetry in forward region thanks to fast timing
 - High-rate capability detectors for Muon Systems
- Status: all sub-systems largely moving to the pre-production phase to the production phase

Additional benefit: the physics exploitation will be a test bench for usage of modern technololgies in future collider experiments

Thanks for your attention

R. Venditti-CMS Upgrades

Status of the art

Tracker

- Inner Tracker: ASIC final and in production
- Outer Tracker: about to start module production HGCAL
- SiPM, scintillator production started

MTD

- Barrel: started module production
- Endcap: sensor procurement review in July; ASIC functionality proven

Muon Detector

• RPC and GEM chambers production ongoing

CMS Phase II tracker

Requirements:

- Radiation hardness: Max fluence up to O(10¹⁶) n_{ea}/cm²
- Preserve >= 98% efficiency
- Preserve spatial resolution
- Increased granularity: 1200 tracks / unit of η
- Reduced material: Preserve calorimetric resolution
- Contribution to the L1 trigger:
 - Outer Tracker: pT modules → stubs compatible with tracks pT > 2GeV

Higgs coupling evolution

https://www.nature.com/articles/s41586-022-04892-x/figures/4

The LHC Run 3

https://lhc-commissioning.web.cern.ch/

	CMS	
	Run 2	Run 3
Inst. Lumi (sec ⁻¹ cm ⁻²)	10 ³⁴	2x10 ³⁴
Target int. lumi (fb ⁻¹)	140	250
Pile up	~35	~50-60

Increased integrated luminosity

- + acceptance for rare events
- + precision measurements
- II trigger bandwidth
- \rightarrow Need for detector upgrades

Run3 CMS muon system upgrades

- Endcap trigger rate dominated by muons reconstructed as high p_T muons
- p_T mis-measurement due to B-field, multiple scattering
- High neutron background vs low hit multiplicity.

For the first time large area triple GEMs in HEP experiment: GE1/1 station Key role of MPGD

- \blacktriangleright High rate capability (O(10KHz/cm²)) and radiation hardness
- > Excellent spatial resolution (100-300 μ m) \rightarrow few mrad res on bending angle
- > Good time resolution (5-10 ns) \rightarrow stubs included in the trigger

R. Venditti-CMS Upgrades

<u>CMS-TDR-013</u>

The GE1/1 station at CMS

- 144 <mark>triple GEM</mark> detectors
- One super-chamber = two triple-GEM detectors
- Eta coverage 1.55 < |η| < 2.18
- Installation completed in 2020
- Currently taking data in Run3 with excellent performance
- Measure of Muon Bending Angles →Clear dependence of the muon p_T

CMS-TDR-013

•

R. Venditti-CMS Upgrades

The GE2/1 station

- Additional stub measurement
- Triple GEM is a mature technology based on mechanical foil stretching
- 3 GE2/1 chambers installed and integrated in data taking
 - gain operational experience
 - occupancy, noise, Dead channel, Cross talk
- Efficiency shows the expected performance

Detector prototype performance

