

Di-Higgs: searches at CMS

Simona Palluotto on behalf of the CMS Collaboration

XIII International Conference on New Frontiers in Physics Kolymvari, 26 Aug - 4 Sep 2024

Outline

• Motivations

- Non-resonant searches at CMS
 - Key channels: the top 3
 - HH combinations
 - More challenging decay modes

• Run 3 improvements

• Conclusions

Probing the Higgs potential

- Higgs boson discovery revealed only a part of the Higgs potential
 - important property of the Higgs boson still weakly constrained by LHC data is the Higgs self-coupling (λ)
 - crucial component of our understanding!

• HH production

→ direct probe of Higgs self-interaction
→ the Higgs potential

- Any deviations from the SM predictions would indicate the presence of <u>new physics</u>
 - the modifier of $\lambda_{\rm HHH}$ wrt the SM prediction is denoted as $\kappa_{\lambda} = \lambda_{\rm HHH} / \lambda_{\rm HHH}^{\rm SM}$

$$V_H = \lambda v^2 H^2 + \lambda v H^3 + \lambda H^4 \rightarrow \frac{1}{2} m_H^2 H^2 + \lambda_{HHH} v H^3 + \lambda_{HHHH} H^4$$

Hunting for HH at LHC

- At LHC, HH production through:
 - gluon fusion (ggF) : ~ 88% at 13 TeV
 - Vector Boson Fusion (VBF) : ~ 7% at 13 TeV
 - smaller contributions from VHH and ttHH
- Searches are both focused on:
 - resonant: new resonances decaying into HH
 - several models: search for a bump in the m_{HH} distributions
 → more in <u>Rainer Mankel's talk</u>
 - non-resonant: upper limits on the SM HH production XS & explore possible BSM processes (could modify XS or kinematics properties)
 - EFT approach → deviations from SM are defined by coupling modifiers (e.g. κ_{λ}) → addressing these searches in this talk

INFN

CMBICOC

Non-resonant searches at CMS: main players

- Higgs boson decay branching ratios: *large variety of final states*
- Sensitivity is driven by 3 final states: good compromise between branching ratios and selection purity

o bbbb

- ggF and VBF production
 - resolved topologies [<u>Phys. Rev. Lett.</u> <u>129, 081802</u>]
 - boosted topologies [<u>Phys. Rev. Lett.</u> <u>131, 041803</u>]
- VV production [arXiv:2404.08462]
- **bbγγ** [<u>JHEP03 (2021) 257</u>]
- o bbtt [Phys. Lett. B 842 (2023) 137531]

	_	bb	ww	тт	ZZ	ΥY
	bb	34%				
	ww	25%	4.6%			
,	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Non-resonant searches at CMS: rarer decays

- Recently, searches have also directed towards rarer decays:
 - WWW, WWTT, TTTT (multilepton) [<u>JHEP C</u> (2023) 095]
 - **bbZZ** (4ℓ) [<u>JHEP 06 (2023) 130</u>]
 - **bbWW** [arXiv:2403.09430]
 - **WWγγ** [<u>CMS-HIG-PAS-21-014</u>]
 - **TTYY** [CMS-PAS-HIG-22-012]

07		bb	ww		ττ		ZZ	ΥY
<u>07</u>	bb	34%			,			
2	ww	25%	4.6%					
2	ττ	7.3%	2.7%		0.39%			
	ZZ	3.1%	1.1%		0.33%		0.069%	
	ΥY	0.26%	0.10%		0.028%		0.012%	0.0005%
		Ľ						

HH → bbbb (resolved)

- / Large branching ratio
- X Multi-jet background
 - Branching ratio: 33%
 - Background: multi-jet QCD and tt processes
 - o data-driven estimate
 - Strategy insights:
 - DeepJet b-tag
 - Non-trivial jet pairing
 - Simultaneous fit of BDT for ggF and of m_{HH} for VBF
 - Upper limits @ 95%
 - o observed: -2.3 < κ_{λ} < 9.4
 - \circ expected: -5 < κ_{λ} < 12

HH → bbγγ

Clean signature and precise resolution of $m_{_{\gamma\gamma}}$

🗙 Small BR

- Branching ratio: 0.26%
- **Background**: $\gamma(\gamma)$ + jets and single Higgs
 - data-driven estimate
- Strategy insights:
 - DeepJet b-tag + kinematical signal region
 - DNN to reduce ttH
 - 2 BDT to separate signal from background
- Upper limits @ 95%
 - o observed: -3.3 < κ_{λ} < 8.5
 - \circ expected: -2.5 < κ_{λ} < 8.2

HH → bbtt

Good compromise between BR and clean signature

- X EW and top background
 - Branching ratio: 7.3%
 - Background: DY, tt and QCD multi-jet
 - QCD estimated from data
 - Strategy insights:
 - DeepJet b-tag and DeepTau
 - elliptical cut on m_{bb} and $m_{\tau\tau}$ to reduce bkg
 - DNN-based discriminant for signal extraction
 - Upper limits @ 95%
 - \circ observed: -1.7 < κ_{λ} < 8.7
 - expected: -2.9 < $\ddot{\kappa}_{\lambda}$ < 9.8

Run 2 HH combination

- Combined full Run2 measurement : $2.5 \times \sigma_{HH}^{SM}$
 - $\circ~$ based on the early Run2 results, we would have anticipated $\sim~6.5~\times~\sigma_{\rm HH}^{~~SM}$ due to luminosity scaling
- Improvements principally thanks to:
 - New ML techniques for
 - jet tag
 - τ ID
 - signal extraction
 - Improved triggers (both L1 and HLT)

Run 2 HH+H combination new since LHCP24!

- H measurements are sensitive to $\kappa_{\!\lambda}$ through NLO EW corrections
 - affect XS and decay widths, with significant impact on processes like ttH and VH
- Combination of H measurements and HH searches simultaneously constrain the Higgs self-coupling
- Challenge: managing overlaps between signal regions in different analyses to avoid double-counting and reduce uncertainties, ensuring precise and accurate constraints
- Constraints on κ_{λ} :
 - HH channel is close to 1 (-1.7 < κ_{λ} < 7.0), aligning with SM expectation of -2.3 to 8
 - H channel is slightly above 1 (-1.2 < κ_{λ} < 7.5), with expected κ_{λ} being from -4.5 to 11.
 - Combining H and HH: -1.2 to 7.5 (observed) and -2.0 to 7.7 (expected)

CMS-PAS-HIG-23-006

15

10

new since LHCP24!

• Never studied before!

 $HH \rightarrow TTVV$

 \checkmark γγ has a good mass resolution and π features a quite clean Ξ_{105} signature

X small BR (0.027%)

- Background: modeled through analytic functions by fitting m_w spectrum
- Strategy insights:
 - cut on m_w
 - events categorized according to a discriminant designed to separate signal from background
 - double Crystal Ball fitted on simulation for signal
- Upper limits @ 95%
 - observed: -13 < κ_{λ} <18
 - expected: -11 < κ_{λ} < 16

new since ICHEP24!

- $HH \rightarrow bbVV$
- Never studied before!
- More high branching ratio, sensitive to κ_{2V} deviations
- \mathbf{X} hadronic final state \rightarrow high QCD background
 - Branching ratio: 13%
 - **Background**: data driven background: parametric transfer factor from QCD
 - Strategy insights:
 - first use of Particle Transformer!
 - multi-variate event classification to improve sensitivity
 - fit to m_{bb} distribution
 - Upper limits @ 95%:
 - observed: -0.04 < κ_{2V} < 2.05
 - expected: 0.05 < κ_{2V}^{-1} < 1.98

Run 3 improvements

- <u>New trigger</u> deployed at the HLT targeting HH and HHH production
 - exploiting recent improvements with ParticleNet tagger
 - data parking strategy for HH
 - subsequent investigations demonstrated effectiveness of this new trigger for HH → 4b and HH → bb**TT**
- Improved T_{had} triggers, DeepTau based
- Particularly anticipating improvements in HH searches where one Higgs boson decays to bb or **TT**

<u>CERN-CMS-DP-2023-050</u>

Conclusions

- Measuring the Higgs boson self coupling is fundamental to probe the Higgs potential and test our Standard Model predictions
- Full Run-2 results have been highly promising, surpassing even our expectations thanks to new and improved analysis techniques
- We are getting closer to reaching sensitivity levels aligned with the SM value
 - we also explored new channels, with combined potential and strong κ_{2V} constraints
 - Run2 delivered great results, including new H+HH combination
- With more data available in Run-3 combined with more and more precise techniques, there are ample opportunities for advancements in analysis strategies
- In conclusion, the future looks bright as we move forward with our research, building on the successes of Run-2 and facing the challenges and opportunities presented by Run-3 and beyond
 - aiming for 5**o** observation at HL-LHC!

HH → bbbb (resolved) - strategy

- Triggers on jet p_T and H_T
- Background estimation :
 - SR (4b) QCD estimation using SR (3b) data
 - Scaling the number of events using the TF in the CR
 - TF dependence in the mass plane parameterised by m_{//}
 - BDT-reweighting ^wused to model differences between 3b and 4b regions,
 - trained on CR, applied on SR
 - For each GGF and VBF categories
 - Validation :
 - Depleted signal region V
 - Same method applied
 - Found good agreement between estimate and V_{SR}^{4b}

HH → bbbb (boosted)

- 🖊 Large branching ratio
- 🗙 Multi-jet background
 - Branching ratio: 33%
 - Background: multi-jet QCD and tt processes
 - o data-driven estimate
 - Strategy insights:
 - first analysis using ParticleNet for b-tagging
 - BDT to separate signal from background
 - Upper limits @ 95%
 - o observed: -9.9 < κ_{λ} < 16.9
 - expected: -5.1 < κ_{λ}^{-1} < 12.2

HH → bbbb (boosted) - strategy

• Triggers

- Several single-jet + H_T triggers :
- Requirements in H_T, jet p_T, trimmed mass & double b-tagging
- Fully efficient for jet p_T >500 GeV

ParticleNet AK8 jet-tagger
 o discriminant score D_{bb}

from ICHEP 2022 presentation

$HH \rightarrow bb\gamma\gamma - strategy$

- Di-photons triggers + photon requirements
 - excellent resolution (~1.4-2 GeV)
- b-jets: selected the first two with the highest score from DeepJet
- Background from:
 - real photons are mitigated through kinematic requirements
 - fake photons by requiring photon ID
 - top backgrounds are reduced with jet/lepton veto + kinematic
 - ttH rejection through a dedicated DNN (ttHScore)
- BDT for event categorization
- 2D maximum likelihood fit on (m_{bb}, m_{yy})

$HH \rightarrow bbtt - strategy$

- Triggers based on leptons and hadronic taus
- 3 channels considered: $\tau_{had} \tau_{had}$, τ_{had} e, $\tau_{had} \mu$
- 2 jets with $\rm p_{T}$ > 20 GeV and $|\eta|{<}2.5$ + b-tagging using HH-btag
- Elliptical cut on $\ensuremath{\mathsf{m}_{\text{bb}}}$ and $\ensuremath{\mathsf{m}_{\pi^{\tau}}}$ to reduce background
- Background estimation:
 - tt, DY+jet from simulations (+normalization from CR)
 - Multijet QCD from data using ABCD method
 - Other processes from simulation

HH → bbZZ

Only result in this channel in LHC

🗙 Small BR

- Branching ratio: 3.1%
- Background: ZZ and single Higgs
- Strategy insights:
 - DeepJet b-tag
 - BDT used for signal extraction
- Upper limits @ 95%
 - o observed: -8.8 < κ_{λ} < 13.4

• expected: -9.8 <
$$\kappa_{\lambda}$$
 < 15

$HH \rightarrow bbZZ - strategy$

- Events with 4 identified leptons (e, μ) + jet selection
 - b-jets selected as those with the highest score
- 3 categories: 4e, 4µ, 2e2µ
- Cut on 4leptons invariant mass (115, 135) GeV
- Background
 - Reducible b. (fake leptons) reduced with a data driven approach (fake factors in control regions)
 - Irreducible b. modeled from MC
- BDT for signal extraction

HH → multilepton

Small background

🗙 Small BR

- Branching ratio: (4W)=4.6% $(WW\tau\tau)=2.7\%$ $(4\tau)=0.4\%$
- Background: QCD, V, VV, tt processes
- Strategy insights:
 - 7 categories of I-multiplicity
 - BDT used for signal extraction
- Upper limits @ 95%
 - observed: -6.9 < κ_{λ} < 11.1
 - expected: $-6.9 < \kappa_{\lambda} < 11.7$

