

ICNFP 2024

Crete, Greece

26th August to 4th September

Swagata Mukherjee (IIT Kanpur, India)

On behalf of the CMS collaboration

CMS trigger/DAQ is a <u>very</u> broad topic

Impossible to discuss all of it in 20 minutes. So I made a choice...

DAQ = Data acquisition

The mainstream

- Core triggers. They have been there since the beginning.
- Example: single/double electron, Jet H_{T} , MET, single/double muon
- Serves a broad spectrum of physics analyses. Very **<u>important</u>** for CMS physics program.
- These triggers are performing in a **robust**, **stable** and **efficient** way (they always have).
- I will speak less about this.

<u>Less mainstream / not-at-all mainstream</u>

- Triggers aiming for experimentally **<u>challenging</u>**, **<u>exotic</u>** signatures.
- Innovative ideas, smart use of modern machine learning techniques.
- Things that you may find odd, extraordinary, <u>novel</u> or debatable!
- Will speak mostly about these.

CMS trigger system (Run3)

[*] If resource is available, parking data is reconstructed as promptly as the standard data

CMS trigger system (Run3)

[*] If resource is available, parking data is reconstructed as promptly as the standard data

Bringing heterogeneity to CMS trigger

- CPU evolution can't cope with CMS's computing demand.
- CMS HLT already using GPUs in Run 3.
 - GPUs are more cost efficient & energy efficient. Ο
- Specific coding styles or API are required for GPUs.
 - CMS's choice: Alpaka (portability library). Ο
 - Same code able to run on multiple hardware (eg. AMD, Intel) 0
- Pixel, HCAL, ECAL and particle-flow reconstruction code already ported to GPU.
 - While re-engineering the existing code for 0 parallelisation, we gained in physics performance.
- More computing power allows CMS to:
 - invest in accurate methods of reconstruction (better Ο quality physics objects at HLT)
 - extend the physics program (running HLT scouting at 0 much higher rate than Run 2).

Fill 4452

The standard stream

Standard stream

Quick offline reconstruction, full event information

Parking streamDelayed [*] offline reconstruction, full event information

HLT Scouting stream

- Majority of high level triggers (often called HLT paths) belong to this category.
- Few hundred HLT paths collecting data for varied purposes
 - Alignment and calibration of detector components

The mainstream in HLT

- Generic HLT paths used in various physics analysis (precision measurements, BSM searches)
- Dedicated HLT paths for targeted physics analysis (often experimentally challenging)
 - Example: dedicated **triggers for long-lived particle (LLP) searches**
- Dedicated triggers to catch any anomalous event which could be BSM (anomaly finder)

Mainstream is robust & efficient, as always

Link to L1T results & Link to HLT results

Parking and scouting at HLT

Novel trigger strategy

Can't fit your trigger in the standard stream budget? Move it to parking or scouting streams

Ref: https://cms.cern/news/ same-lhc-same-cmsmore-physics

arXiv:2403.16134

The parking stream at HLT

Standard stream

D

Parking stream
Delayed [*] offline reconstruction, full event information

[*] If resource is available, parking data is reconstructed as promptly as the standard data

Novel trigger strategy

Ref: https://cms.cern/news/ same-lhc-same-cmsmore-physics

arXiv:2403.16134

- Parking strategy is flexible according to physics needs.
- Currently CMS has dedicated parking triggers for LLP, di-Higgs, and VBF Higgs production signatures.
- Double muon, single muon, and double electron parking triggers for **B-physics**.

$$egin{array}{cccc} B^0
ightarrow \mu^+\mu^- & B^+
ightarrow K^+e^+e^- \ B^0
ightarrow J/\psi K_{\rm S}^0
ightarrow \mu^+\mu^- & B^0
ightarrow J/\psi K_{\rm S}^0
ightarrow J/\psi K_{\rm S$$

The scouting stream at HLT

Ref: https://cms.cern/news/ same-lhc-same-cmsmore-physics

arXiv:2403.16134

L1 scouting (40 MHz scouting)

- Standard L1 rejects 99.75% events. L1 scouting will allow us to have a look at those events
- Tremendous capability. Enables studies of otherwise inaccessible region of phase space.
- Next step: Properly identify all potential signatures unreachable through standard trigger and let L1 scout those events.

<u>CMS DP -2024/056</u>

- □ Idea: Store **trigger-less data** with limited resolution before L1 decision.
- □ L1 trigger data Scouting is being developed for high-lumi LHC.
- A **demonstrator** has been operational since the start of Run 3.

L1 scouting in Run 3: a proof of concept

Long-lived particles in BSM

Very exotic signature.

Often needs dedicated trigger strategy.

Displaced jet

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet triggers to capture various detector signatures, depending of LLP's lifetime (decay length).
 - □ tracking-based
 - □ ECAL-based
 - □ HCAL-based
 - □ Muon system-based

Displaced jet trigger

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet
 triggers to capture various
 detector signatures,
 depending of LLP's lifetime
 (decay length).
 - □ tracking-based
 - **ECAL-based**
 - □ HCAL-based
 - Muon system-based

Tracking-based displaced jet trigger

- □ Trigger implemented in Run 2.
 - Displaced-jets search with full Run 2 data <u>https://arxiv.org/abs/2012.01581</u> (Published in PRD)
- Run 3 trigger improved. Better than Run 2 by a factor of ~5-10
- □ L1 Strategy: H_T >430 GeV or (soft-muons with p_T >6 GeV and H_T >240 GeV).
 - Triggering on soft muon enables lower H_T thresholds and is sensitive to signatures with b-jets in the final state
- HLT strategy: Reconstruct displaced jets with displaced tracks.
 Prompt track veto
- □ Early Run 3 result already public, <u>CMS PAS EXO-23-013</u> (2022 data)

Displaced jet trigger

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet
 triggers to capture various
 detector signatures,
 depending of LLP's lifetime
 (decay length).
 - □ tracking-based
 - □ ECAL-based
 - □ HCAL-based
 - Muon system-based

ECAL-based displaced jet trigger

ECAL measures arrival time of objects with precision of ~200 ps (for energy deposits >50 GeV)

- **L1 Strategy**: H_T >430 GeV or (L1 Tau p_T >120 GeV and H_T >360 GeV)
 - L1 Tau seeds enable lower HT thresholds.
 - As LLPs become more massive and displaced, the resulting jets become collinear and can look like τ leptons

HLT strategy:

- Nominal jets (track matched to the jet) or trackless jets (no matched track).
- **Use ECAL timing information for jet timing.**

Ref: https://cds.cern.ch/record/2865844

Exciting searches ongoing!

Displaced jet trigger

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet
 triggers to capture various
 detector signatures,
 depending of LLP's lifetime
 (decay length).
 - □ tracking-based
 - **ECAL-based**
 - □ HCAL-based
 - Muon system-based

HCAL-based LLP triggers

HCAL depth segmentation + HCAL timing \rightarrow excellent for LLP Exploit these capabilities in L1 triggers (and subsequently in HLT)

- Use HCAL time information at the L1 trigger level to identify delayed jets (>6 ns). Prompt veto applied.
- 2. Trigger on minimal energy deposits in the first two layers and high energy deposits in the later layers

19

Displaced jet trigger

- Hadronically decaying LLP is a viable BSM scenario.
- Several displaced-jet
 triggers to capture various
 detector signatures,
 depending of LLP's lifetime
 (decay length).
 - □ tracking-based
 - **ECAL-based**
 - □ HCAL-based
 - Muon system-based *

Muon system based displaced jet trigger

- Signature was studied in offline analysis already in Run
 2, but no dedicated trigger strategy.
- Analysis with full **Run 2** data:
 - endcap-only (<u>published in PRL</u>)
 - endcap+barrel (submitted to PRD)
 - **Both triggered with MET.**
- □ In **Run 3**, improved the trigger strategy (in endcaps).

L1 strategy: Count hits in a given muon chamber. Event accepted if hit multiplicity is greater than some threshold (configurable).

HLT strategy: Reconstructed hits clustered using Cambridge-Aachen (CA) algorithm. Some selections applied on cluster properties.

Ref: https://cds.cern.ch/record/2842376

There are many other LLP triggers in CMS

Displaced Dimuon

Already have public results with Run 3 (2022) data. <u>EXO-23-014</u>

Triggering on out-of-time objects

LLP can be stopped inside CMS, and decay later. Look for LLP decays during empty BX.

Published Run 2 results. Run 3 analysis underway.

Displaced/delayed Photon

(another use-case of ECAL-timing)

Published Run 2 results. Run 3 analysis underway.

Machine learning at trigger level

- ML is an essential and versatile tool that we use to
- improve existing \rightarrow approaches
- \rightarrow enable new approaches

The unknown-unknown territory: how to approach it?

- If we knew the exact signature we are looking for, we'd build a trigger for it!
- □ In absence of that, what else can we do?

- Use of ML to learn the features of typical standard model events
- □ Then, pick events that are not typical, using autoencoder (AE)
- Train AE on typical events (ZeroBias data) and use reconstruction error (loss) as a metric for anomalous-ness

 $\mathcal{L} = || \mathbf{X} - \mathbf{X'} ||$

Anomaly detector @L1 trigger in CMS

Two complementary approaches

Anomaly eXtraction Online Level-1 Trigger algorithm

Inputs: P_T , η , ϕ of Jets(x10) , e/γ (x4), μ (x4), and MET (from Calo layer-2 and Global Muon Trigger)

Ref: <u>https://cds.cern.ch/record/2876546</u>

Inputs: Low-level information (from Calo layer-1) in image format. Ref:

https://cds.cern.ch/record/2879816

CICXDA Calorimeter Image Convolutional Anomaly Detection Algorithm

CMS Preliminary 2023 (13.6 TeV)

ML@L1 trigger becoming important. Tools for ML@FPGA developed.

- □ Neural Nets → HLS4ML (<u>documentation</u>)
- $\square \quad Boosted Decision Trees \rightarrow Conifer (<u>github</u>, <u>paper</u>)$

An event selected by AXOL1TL

CMS Experiment at the LHC, CERN Data recorded: 2023-May-24 01:42:17.826112 GMT Run / Event / LS: 367883 / 374187302 / 159

SUEP?

Emerging jet? Or just normal QCD?

Selected by AXOL1TL, but not by any other L1

ML@HLT

≻ Tau HLT

- > Reconstruction: Hadron plus strip
- Identification: CNN+DNN based tagger (DeepTau)

27

- ParticleNet b-jet tagger@HLT. GNN-based.
- Jets treated as a permutation-invariant point cloud.
- Performance gain, specially for HH(4b), HH(2b2τ) and HHH(6b) processes, compared to Run 2.

Technology & innovation work together to achieve an exceptional trigger/DAQ performance in CMS

https://www.sciencephoto.com/media/351841/view/artificial-intelligence-artwork

Extra slides

Run 2

