XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

sPHENIX Experiment at RHIC

Stacyann Nelson for sPHENIX Morgan State University, Baltimore XIII International Conference on New Frontiers in Physics

The sPHENIX Experiment

sPHENIX is the first new major detector at RHIC in over 20 years

It is a complete tear-down and rebuild of PHENIX which included a full modernization of the experiment complex

sPHENIX Collaboration:~400 members,80+ institutions,14 countries

08/28/2024

sPHENIX is a large-acceptance, high-rate detector optimized to measure jet and heavy quark physics in HI collisions by incorporating **Hadronic** and **EM Calorimetry**, a **Time Projection Chamber**, **Silicon Pixel** and **Strip detectors**, a **Micromegas detector** plus **Global/Trigger detectors** with a **high rate DAQ/Trigger** and a **1.4 T solenoidal magnetic field**.

sPHENIX Detector

Features of sPHENIX:

SPHENIX

Large, uniform acceptance

- 2π coverage in azimuth
- -1.1 < η < 1.1 geometric coverage

Full EM & hadronic calorimetery High precision tracking High precision vertexing, DCA Large AA samples with minibiased trigger High rate (15 kHz) DAQ

SPHENS SPHENIX Physics Programs

Jet Physics

- Jet correlations
 Nuclear Modification Factor RAA
- Jet structure
- Jet flavor dependencies

Sequential quarkonia
 melting: Suppression of
 quarkonium depending
 on the state

•Flavor (mass) dependence of parton energy loss in QGP

Origin of the transverse single spin asymmetries
Nucleon structure
Fragmentation functions

08/28/2024

ICNFP 2024

Plan and status

sPHENIX Beam Use Proposal 2023 (not all shown)

• The first beam came in May/2023. Luminosity, [L] < 10 \sqrt{SNN} Data 2023/08/01: Beam was stopped. cm) Year **Beam** (GeV taking • 2023/08-09: Commissioning with cosmic ray (week) measurements Sampled Recorded 4.5 nb⁻¹ 3.7 nb⁻¹ **2023** Au + Au 200 9 **2024:** p⁺+p⁺, Au + Au • Transversely polarized proton $p^{\uparrow} + p^{\uparrow}$ (~60% polarization) collision at $\sqrt{s} = 200 \text{ GeV}$ 0.44 pb⁻¹ **2024** p[†]+ p[†] 200 17 (5 kHz) 45 (62) pb⁻² Commissioning with Au + Au for 3 weeks carried over from 2023 to check background & other cross checks **2024** Au + Au 200 3 0.4 nb⁻¹ 0.11 pb⁻¹ **RHIC currently** p↑p↑ running AuAu since Planned to be ended at early Oct Started 5/24 21 (25) nb **2025** Au + Au 200 24.5 6.3 nb⁻¹ 2025: Au + Au

2023: Commissioning

• The construction was finished in April/2023.

sPHENIX Sub-systems

SPHENIX

08/28/2024

Hadronic Calorimeter

- Outer HCal is a steelscintillator, "tilted plate" calorimeter.
 - •Outer HCal (outside the solenoid) and Inner HCal (inside the solenoid)
- Doubles as the support for EMCal. i.e. Sector are supported off the Inner HCAL
- SiPMs readout
- Full calorimeter (EM+H) sys=4.7 $\lambda_{I,}$
- Avg jet $E res < 150\%/\sqrt{E} \oplus$ 3.5%
- Measures the energy of hadrons (such as protons, neutrons, and pions)

ICNFP 2024

Electromagnetic Calorimeter

- EMCal blocks made of tungsten powder/epoxy composite encasing 2500 scintillating fiber/blocks
- Blocks segmented for HI collision $\Delta \eta \times \Delta \phi \approx 0.025 \times 0.025$
- 4 tower/block 96 blocks/sector, ~24k towers
- Good energy resolution

08/28/2024

Di-photon mass from p+p Run 24

Time Projection Outer Tracker (TPOT)

TPOT

- The TPOT consists of eight identical Micromegas modules, two detectors/module, grouped in three sectors. The three sectors are mounted to the EMCal at the bottom of the TPC.
- One sector has four modules, two sectors have two modules.

The TPOT's function is to provide tracking distortion correction information for the TPC.

08/28/2024

ICNFP 2024

Time Projection Chamber

- Field cages are Kapton-carbon fiber
- End caps are aluminum
- Central membrane is G-10-honeycomb sandwich
- Internal chamber volume is filled with Ar-CF-Isobutane 75/20/5 gas
- GEM foils provided by CERN
- Electronics readout on each end
- ASIC modified SAMPA chip from ALICE

InTermediate Tracker(INTT)

- Two-layer silicon-strip detector for Tracking and vertex determination with acceptance: $|\eta| < 1.1$ and $\phi = 2\pi$
- tracking between TPC and MVTX with good timing resolution
- Fast time response of 60ns allowing to readout collisions each data from each single RHIC's beam bunch-crossing and suppress eventpileup background.
- 78 um pitch, provides timing tag resolving bunch crossing

Minimum Bias Detector (MBD)

- MBD based on original PHENIX Beam Beam Counter with new electronics.
- Min-Bias trigger detector
- Two arrays of 64 custom PMTs with quartz radiator windows.
- MBD system timing resolution = 50 ps.
- centrality and reaction plane determination

08/28/2024

ICNFP 2024

The MVTX is a 230M channel, 3-layer MAPS-based pixel detector The MVTX is a copy of inner 3 layers of the ALICE ITS w/ a custom design of service supports to meet sPHENIX needs Staves and Readout Units produced at CERN w/ participation from sPHENIX collaborators precise vertexing strobe (L2 PHENIX Preliminar 10⁵ Au+Au Vs 10⁴ Entries SPHENIX Preliminary p+p √s = 200 GeV MVTX Chip Occupancy 10^{3} Laver 0: (Occ) = 0.0034 Layer 1: (Occ) = 0.0032 10 10^{2} Laver 2: (Occ) = 0.0031 10 Jo 10 Number 10² 10 10 12 14 16 18 20 22 Number of pixels over threshold per strobe (L1) 0.2 0.1 0.3 0.4MVTX Chip Occupancy [%]

ICNFP 2024

Monolithic Active Pixel Vertex (MVTX)

08/28/2024

SPHENIX

13

sPHENIX Event Plane Detector (sEPD)

- Two forward disks of scintillator tiles w/ WLS readout into SiPMs
- Covers both forward & backward rapidity region in 2.1<|η|<4.9
- 12 sectors/disk each subdivided into 31 tiles
- Total 744 channels with 16 segments in η and 24 in φ
- Essential role for event plane determination w/ high resolution
- Observe correlations between sEPD-MBD, sEPD-EMCal in RHIC data

08/28/2024

14

05/28/2024

10²

10

60

sPHENIX Preliminar p+p 200 GeV

sEPD Rings: [1,3]

Total MBD Charge [arb. units]

sEPD ADC sum [arb. u 00005 0005

Jet Size and Substructure in sPHENIX

sPHENIX will measure jets as a function of the jet size

- Explore balance of competing increased energy loss and energy recovery effects
- Address tensions between LHC jet results at low pT

sPHENIX will perform precision measurements of jet (sub)structure using calorimetric and particle flow jet:

- Access to QGP resolving power
- Parton shower dependence to energy

ICNFP 2024

See Tanner Mengel's talk on Underlying event characterization in 200 GeV Au+Au collisions and jet measurements with the sPHENIX detector, Wednesday @ 12 pm

Stacyann Nelson(MSU)

08/28/2024

Den Heavy Flavor

Current p+p running is key for sPHENIX HF program ->boost in streaming readout for higher statistics needed for R_{AA}, Λ_C / D0, ->Reached 10% streaming as planned for Run24

08/28/2024

ICNFP 2024

- sPHENIX studies QGP and Cold-QCD at RHIC in BNL.
 - 2024: p[↑] + p[↑] data taking + 3 wks rollover of Au + Au commissioning.
 - 2025: Au + Au data taking (higher statistics)
- Physics: Jet / Heavy flavor / Cold-QCD
- Currently, Run24 is ongoing with all subsystems commissioned

BACKUP

Centrality in SPHENIX

MBD total charge distributions matches well with the NBD-Glauber model

Ratio plot indicates high efficiency of MBD 92%

Global detectors

Three Global detectors used for event characterization:

- Min-bias Detector (MBD)
- Zero Degree Calorimeter (ZDC)
- sPHENIX Event Plane Detector (sEPD)

