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Bound state perturbation theory 77

QED atoms: Yes, but tricky ...

QCD hadrons: Non-perturbative!?

Bound state derivations based on

the QED action, (c.f. the S-matrix)
are needed for textbooks and QCD.
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Strongly bound gg and gqg states??
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Gribov's perturbative confinement

There 1s a critical value of «; :
ol = xCr' (1 —4/2/3) ~0.43

\)

At a™ the structure of the vacuum
changes and the coupling freezes.

D&K: “This number ... 1s numerically small.
Gribov’s 1ideas ... offer an intriguing possibility to
address all the diversity and complexity of the
hadron world from within the field theory with a
reasonably small effective interaction strength.”
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Gribov, hep-ph/9807224 and hep-ph/9902279
Dokshitzer and Kharzeev, hep-ph/0404216
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Positronium in QED (1) *

[e"e", P =1=0) = l[dx1dx2 px) T F ) — x)p(x,) | 0)

1_‘Pam — 75 JPC — O_+ HQED | €_€+> — (zm T EB) | e_e_l_)
F/})ﬁhg =€) - Yy JPC=1-- a << 1 NR approximation

Ve o« F(r)=N exp(—amr/2
(——=2)F0) = EgF) (7) ZP( )

me r EB - — WL/4

Analytic, non-perturbative solution for e "e™ eigenstates 1n the classical potential.

May serve as the starting point for a formally exact perturbative expansion.
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Positronium in QED (2) ’

NRQED 1s used to calculate the perturbative expansion Caswell and Lepage (1986)

Positronium hyperfine splitting AE = M(°S,) — M (1SO) 1S given by a power expansion in o
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m, 120 \9 " 2 )z 24 648 3456  \144 ' 2
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T T

Adkins, Cassidy, and Pérez-Rios (2022)

QED calculations for atoms are done 1n the rest frame only
Poincare covariance 1s challenging for bound states (spatially extended)

In IF: Does the potential —a/|x | remain instantaneous when |P| > M ? [Yes]
Do other Fock states than [e~"e™) contribute when |P| > M ? [Yes]



Instantaneous potential (QED in IF)

No physical particle can move faster than light.

Gauge theory Lagrangians lack 6tAO and V - A terms.
— A'and A; do not propagate in space-time. They are gauge dependent:

V-A(t,x) =0 Coulomb gauge Gauge condition for all x at the same ¢
A%t,x) =0  Temporal gauge induces an instantaneous potential
Consider here temporal gauge: quantization without constraints, £ = — 0 A

Invariance of physical states under /-independent gauge transformations requires:

(V - E — el/fﬁ//) | phys) =0 Determines E; from instantaneous electron positions:

€
E;(t,x)|phys) = — ijdy ————yly(t,y) | phys)
dr|x —y|



Positronium in motion (IF)

Lorentz contraction 0 F
~ 1/am ~ 1/aE The Coulomb potential —— — grows with P,
e 7 M
/\ wheras excitation energies decrease with P:
Boost Y E
., v \/P2+(2m+EB)2—\/P2+4m2z =
P=0 P>>M The Poincaré covariance ot atoms

1s realised dynamically 1n the IF.

QED: |e e'y) Fock state contributes to Ep at leading O(a?) for P > 0.
[t subtracts the large Coulomb energy, ensuring E = \/ M? + P

M. Jarvinen, Phys. Rev. D71 (2005) 085006 [hep-ph/0411208]
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Fock expansion in A%=0 gauge (QED)

H(t)|M,P,t) = \/Mz + P | M, P, 1) M: Rest mass P: CM momentum

_ Fock expansion in terms of e, e™
|M,P,t — (I)‘{g },{e_"},{}/}). P € 7
) ; ! ! in temporal gauge (A" = 0)

Electrons 1n everv Fock state interact
: (V- E — ey’ — . Y .
Reca ( i l//) | phys) =0 through their instantaneous electric field:

\

@i

Q)

A

(1, y) | phys) &g@\
7N

(10| phys) == V. | dy
dr|x —y|

int

H(?) = de [HO + Hy, + Hint] H, = de %Eg H, = — e[dx v'a-Ay
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Perturbative bound state expansion (QED)

Start from the | e~e™) Fock state of Positronium with momentum P

[e"e™; Pt =0) = deldxz p(xp) e DR OB — x,) y(x,) | 0)

Caswell and Lepage (1978)

Operating with H(7) creates an |e e"y) Fock component at O(¢e)

Operating with H(f) on ¢,+,-|e"e™) + ¢,+,-,| e"e™y) creates |e"eyy) and
le"et e"e™) components at O(e?), etc.

Form eigenstates of H(¢) at O(e") by including a sufficient number of Fock states.

This defines a perturbative expansion for bound states of any CM momentum P

A systematic PQED approach to atoms allows to consider an extension to hadrons.



Quarkonia

10

The c¢ and bb states are described by the Schrodinger eq. with the “Cornell potential”

4 o _ _

V(T‘) — V'r & L Xes) 2MB)_ _ _ _ _ ]
ST 10.50 | (2D) —

V'~ 0.18 GeV?, a, = aS(mé) Z :
1025 1y

R JC1D) -

V'r is treated as a classical potential. g . o -
. ;o 1000 ) :
It involves the confinement scale V', T | :
2 l :

= 975 — —

Transitions are calculated l Bottomonium -
. . . - + transitions " -
perturbatively in a,, as in QED. 9.50 |- e family —
i (Ye,) _

(e o e 1+- 0,1,2)**  (1,23) -

- L =0 0 1 1 2 -

E. Eichten et al, Rev. Mod. Phys. 80 (2008) 1161



Lattice QCD confirmed the Cornell potential

3 B | | | | | : _
=62 o
27 p=6.4 —
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l _
LO
2> 0 :
>
.~ 1 The quenched Wilson -
— > \ action SU(3) potential.
] | .
Cornell: V(T) — V'r >
-3 3T -
Gunnar S. Bali, Phys.Rept. 343 (2001) 1
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Transitions are determined perturbatively

1. — hadrons 1s calculated perturbatively, as . — gg:

[(7.—gg) Yasm?)] {1 s
C(p.— vy  8a’ |

T

as(mi) ]

No V' dependence: The confining interaction does not create gluons

Consistent with the dominance of gg and ggg constituents
also for strongly bound states.

Paul Hover Kolymbari 2024
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The inclusion of Aycp

Z ocp does not have the continement scale A, -

Neither do the field equations of motion, nor the E7 constraint of A” = 0 gauge:
(V- Ef + gfpAp - E. — gy'T) | phys) = 0
The confinement scale must be introduced without changing £ :

Steven Weinberg: Quantum Theory of Fields (Vol. )
“...Quantum field theory 1s the way it 1s because . . . it 1s the only way

to reconcile the principles of quantum mechanics . . . with those of special relativity.”

A pcp may be introduced through a boundary condition: Ej'(|x| — o0) # 0.

This implies a non-vanishing gluon field energy in the vacuum.
Paul Hover Kolymbari 2024



A non-vanishing field energy of the vacuum 14

Recall the “Bag model™: Z bag = (& 0CD — B) 8(bag) v oo
A. Chodos, et al., Phys. Rev. D9 (1974) 3471 Cra

) ) Perturbative / B OoCD
However, this moditied Z ¢, . sacuum ; .

Lattice QCD supports the physical
picture of the bag model.

F. Gross, et al., Eur.Phys.J.C 83 (2023) 1125 [2212.11107]
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Long-range effects from E/(|x| — o) #0 ? 15

QED: E,(t,x)|phys) = —Vdey 4ﬂ‘x€_y‘ w'y(t,y) | phys) — 0 for |x| — oo

This gives the —a/r potentials of the e~ and e™ in w(x,)y(x,) | 0)
An external observer sees a dipole field, which must vanish for |x| — oo

QCD: Color singlet states give £;'(x) = O at all x (after summing over quark colors)

In 1/7A(x1)1//A(x2) | 0) the qA(xl) quark sees the E;'(x) field of the QA(xz) anti-quark
The E¢(x) field of ¢*(x,) need not, separately for each color 4, vanish as | x| — o0 .

Consider a homogenous solution V - Ef'(x) | phys) = 0 in solving for E{(x) from
V- E[(x)|phys) = g| = furcAp - Ec + ' Ty (x)| | phys)
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N pcp from a boundary condition

Poincar¢ symmetry restricts the form of the homogeneous solution:

E/(x)|phys) = Vx[dy [Kx -HL] [abcAb -E(y)—y'T al/f(y)] | phys)

&,y)

The contribution to the Hamiltonian 1s

04

_ | a a _ _ S
— EdeZEL y EL — J'dde{y ' < _%szdx T gK_ + E ‘y Z‘ }%a(y)%a(z)

The term o x~ gives an x-independent field energy density: Hy, [dx

For each state | phys), k 1s determined such that the energy density is universal.

This leaves one physical scale A, p, given by the energy density of the vacuum
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qq Fock state potential

| g(x1)g(x,)) = Z A (x Dyp(x,) | 0) globally color singlet gg state
A

I, %[dx Z E¢ . E¢ Zvlaq) = V,:19q) Eigenstate of 77y,

U

VX1, %) = A*|x; —x,| — C Cornell potential

| X1 — X |
This potential 1s valid also for relativistic gg Fock states, in any frame

The linear, confining part o« A% is of O().

A4
2g° Cy,

The universal vacuum energy density is £, =
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Baryon Fock state potential

[ g(x1)q(x3)q(x3)) = Z EApcW, (XD (6w (x3) | 0) Baryon Fock state
A.B.C

2 g 1 | 1
Cqu(xl X2 x3) = A qqq(xl X5 x3) — g a ( | | )

| X, —x; ] | X, — x5 | x5 — x|

Confining potential

When two of the quarks coincide the potential reduces to the gg potential:

(X1,X,,X,) = A?|x —x\—i %
qqq 122> %2 1 2

— =V __(X{,X,)
3 |x;—x] e

Analogous potentials are obtained for any globally color singlet
quark and gluon Fock state, such as ggg and gg.



gq bound states at @(aso)

197.P = 1=0) = | dxidey 72065, — 2w 0

The bound state condition H |gg) = M| qg) gives

%

70 - 3 +mA°|®(x) + ®(x) i’y -V —my’| = [M - V(|z|)|P(x)

where x = x1— x» and V(x) = A?| x|

In the non-relativistic limit (m > A) this reduces to the Schrodinger equation.

—  The quarkonium phenomenology with the Cornell potential.

Paul Hover Kolymbari 2024
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Example: —1p = 57~ = (—1) states at O(a.) &
2 A 0 - X
©_(2) = [ (i V 4 my®) + 1]y Fi (1) Y5 (2)
F/ + (i | MV_ V)Fl’ + %(M — V)2 —m? j(j; b F; =0 Radial equation
Regularity of the wave function determmines the bound state masses M
Linear Regge trajectories 'y o Iin=‘(). -
with daughters: | J
Spectrum similar to ° A
dual models 1 e e e o o o o o o o
| B - MV
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Frame dependence of EM form factors

In a perturbative expansion each order in o, including (0{;) ),
must have exact Poincaré covariance. Boost covariance 1s dynamical in IF.

Check with electromagnetic form factor for any states A, B:
Fhs(y) = (B, Pglj*(y) |A, Pa) = 5= Y(B, Pplj#(0) |A, P )

0,F7, =0 Gauge invariance OK

' X R Transtforms as a 4-vector under boosts: Poincaré invariance OK

Paul Hover Kolymbari 2024
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The three main points

1. Systematic perturbative methods bound states, based on the action,
should be developed for bound states.

Cf. the derivation of the perturbative S-matrix in the Interaction Picture.

2. The Poincaré covariance of bound states merits attention.

3. The confinement scale A, must be introduced without changing £, .

PH: 2101.06721, 2304.11903
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