Search for Higgs boson production through resonance decays

Rainer Mankel (DESY) for the CMS Collaboration

ICNFP 2024 Conference Kolymbari, Crete, Greece 2 September 2024

Introduction

- Dominant production mechanisms and accessible main decay modes of the H boson* have been experimentally established
 - search narrowing down on nonresonant HH production \rightarrow report by Simona Palluotto later in this session
- Can the H boson be produced through decay of a heavy resonance?
 - another potential source e.g. of HH pairs?
 - → not in SM... any observation of resonant Higgs boson production would imply New Physics
 - → H boson is an important probe for extensions of the SM
- Presentation is largely based on a recent comprehensive review article:

CMS Collaboration, Searches for Higgs boson production through decays of heavy resonances, arxiv:2403.16926, March 2024 (submitted to Physics Reports)

*Nomenclature: in this presentation, H always denotes the SM-like Higgs boson found at 125 GeV

Physics models for resonant H production

Only a small selection

CMS
Compact M

Extended Higgs sectors	Signatures:
MSSM: two Higgs doublets	Х→НН. Х→ΖН
 two CP-even, one CP-odd, two charged Higgs bosons 	
 NMSSM: two Higgs doublets and one singlet 	X→YH (, X→HH, X→ZH)
 three CP-even, two CP-odd and two charged Higgs bosons 	
 Real-singlet extension: one additional singlet 	X XIIII
 two CP-even Higgs bosons 	X→HH
TRSM: Two real-singlet model	
 three CP-even Higgs bosons 	X→YH (, X→HH)

Physics models for resonant H production (cont'd)

WED: Warped extra dimensions			
heavy resonances:	Signatures:		
 spin 0: Radion (R) 	R→HH		
 spin 2: Kaluza-Klein graviton (G) 	G→HH		

> HVT. Heavy vector triplet	
	Signatures:
 heavy spin 1 vector bosons: 	
	W'→WH
	$Z' \rightarrow ZH$
• Z'	

Overview of individual searches

	Process	Reference	Interpretation	
VH	$X \to Z(\ell \ell) H(\tau \tau)$	CMS PAS HIG-22-004 NEW!	Extended Higgs sector	
	$X \to Z(\ell \ell + \nu \nu) H(bb)^{boosted}$	EPJ C 79 (2019) 564	HVT	
	$X \to W(\ell \nu) H(bb)^{boosted}$	PRD 105 (2022) 032008		
	$X \to Z(\ell \ell) H(bb)^{boosted}$	EPJ C 81 (2021) 688		
	$X \rightarrow Z(qq)H(bb)^{boosted}$	PLB 844 (2023) 137813		arxiv:2403.16926
HH	$X \to H(bb)H(WW)$	JHEP 07 (2024) 293	Extended Higgs	干
	$X \to H(bb)H(WW)^{boosted}$	JHEP 05 (2022) 005	sector, WED	
	$X \to H(WW + \tau\tau)H(WW + \tau\tau)$	JHEP 07 (2023) 095		1 com
HH +YH	$X \to Y(bb)H(\tau\tau)$	JHEP 11 (2021) 057		con binati
	$X \to Y(bb)H(\gamma\gamma)$	JHEP 05 (2024) 316		on YH nbination
	$X \to Y(bb)H(bb)^{boosted}$	PLB 842 (2023) 137392		
	$X \to Y(\gamma \gamma)H(\tau \tau) + Y(\tau \tau)H(\gamma \gamma)$	CMS PAS HIG-22-012 NEW!	(Backup)	

$X \rightarrow VH$ decays

| Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

$A \rightarrow Z(\ell \ell) H(\tau \tau)$ Low mass region (m < 1 TeV)

- Studying inclusive and b-associated production
 - mass range of 200–800 GeV probed
- H reconstructed in $\tau\tau$ decay modes $e\tau_{had}$, $\mu\tau_{had}$ and $\tau_{had}\tau_{had}$
- Invariant mass of A candidate inferred by likelihood fit
 - 125 GeV mass constraint fit on H candidate improves mass resolution

➔ No excess observed

 $A \rightarrow Z(\ell \ell) H(\tau \tau)$ (cont'd)

Interpretation

- Cross section upper limits significantly improved compared to 2016-only analysis
- MSSM interpretation: excluding values of $\tan \beta < 2.2$ for $225 \le m_A \le 350$ GeV in $M_{h,EFT}^{125}$ scenario [1]

CMS PAS HIG-22-004

[1] H. Bahl, S. Liebler, and T. Stefaniak, "MSSM Higgs benchmark scenarios for Run 2 and beyond: The low tan β region", Eur. Phys. J. C 79 (2019) 279

Heavy vector triplet (HVT) models \rightarrow W' and Z'

- CMS
- Extensions of SM gauge groups with new force-carrying vector bosons W' and Z'. Examples:
 - weakly coupled W' and Z' models
 - little Higgs models
 - composite Higgs scenarios
- Decays to VH final states possible: $W' \rightarrow WH$, $Z' \rightarrow ZH$
- Phenomenology studied with simplified Lagrangian
 - Model A: weakly coupled extended gauge theory
 - Model B: mimics strongly coupled composite Higgs model
 - Model C: suppressed couplings to fermions
 - only VBF production possible
- In particular in models B and C, couplings to bosons are larger than to fermions → large branching fractions to VH and VV

$V' \rightarrow VH$

High mass region (m > 1 TeV)

- Final states with leptons dominate for masses up to 1.7 GeV (W') and 3.2 GeV (Z')
 - for higher masses, fully hadronic channels show higher sensitivity (boosted signatures)
- Drell-Yan production: sensitive to models **A** + **B** up to masses of ~4 TeV

HVT couplings from $V' \rightarrow VH$

arxiv:2403.16926

- For Drell-Yan production, strong exclusions in g_F , g_H parameter space
 - except in the very low g_H region, which is however accessible by fermionic modes (like $W' \rightarrow \ell \nu$) (\rightarrow Backup)
 - → models **A** and **B** excluded for $m_{V'} = 2 T eV$
- For model C (exclusively VBF production), data set not yet sufficient to exclude couplings below $g_H = 3$

DESY. | Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

$X \rightarrow HH$ decays

Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

X→HH searches

- Six analyses in five different final states
 - use B_{SM}(H) to bring all channels on same footing
- All observed limits compatible with SM expectations
- Combination improves sensitivity in particular in range 0.5–1 TeV

138 fb⁻¹ (13 TeV)

arxiv:2403.16926

→ Best limits to date for masses below 320 GeV and above 800 GeV

138 fb⁻¹ (13 TeV)

X→HH searches: interpretations in the MSSM

arxiv:2403.16926

- MSSM benchmark scenarios: X→HH channel gives strongest observed lower limits on tan β
 - *M*_h¹²⁵ scenario not very suitable for HH measurements since inconsistent with H(125) mass at low tan β
 - here using $M_{h,EFT}^{125}$ scenario
- ➔ For m_A>400 GeV, HH combination provides unique exclusions
- → Together with other channels, exclude $m_A \le 450 \text{ GeV}$

DESY. | Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

Page 15

X→HH searches: interpretations in WED

Lower limits on radion model parameter Λ_R (from spin 0)

- ➔ best sensitivity for m_R=1-2 TeV
- Upper limits on graviton parameter *k*̃ (from spin 2)
 - ➔ best sensitivity for m_G=250-450 GeV and 700-2000 GeV

arxiv:2403.16926

$X \rightarrow YH$ decays

| Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

X→YH searches: first combination!

arxiv:2403.16926

- Combination of analyses in Y(bb)H(ττ), Y(bb)H(γγ) and Y(bb)H(bb) boosted channels
 - possible because all share the $Y \rightarrow bb$ decay mode
 - assume SM branching fractions for H boson
- The boosted topology dominates
 - at large m_X, except near the kinematic limit
 - at medium m_{χ} and low m_{γ}
- Otherwise, the resolved $Y(bb)H(\tau\tau)$, $Y(bb)H(\gamma\gamma)$ channels dominate the combination

X→YH: interpretation within NMSSM theory

- Comparing with the "maximally allowed" cross sections taking existing measurements into account
 - this is a moving target (here NMSSMTools v5.6.2 [1])
 - measurements by us and others are already taken into account in the maximization → no "additional" exclusion due to our data as expected
- → While our data are touching the maximally allowed cross sections at low m_Y, the constraints at large m_Y are mostly indirect (through the NMSSM parameter space)

[1] U. Ellwanger and C. Hugonie, "Benchmark planes for Higgs-to-Higgs decays in the NMSSM", Eur. Phys. J. C 82 (2022) 406.

X→YH: outlook towards HL-LHC

arxiv:2403.16926

→ CMS measurements at the HL-LHC are projected to exclude most of the currently allowed cross sections for m_Y < 200–300 GeV</p>

Finite width and interference

Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

Finite width and interference

- Most of the shown measurements are based on the narrow width approximation (NWA)
 - natural width negligible compared to experimental resolution
 - no interference
- In general, however, interference between non-resonant and resonant HH production is possible
 - at which level of sensitivity does finite width become relevant?
 - how strong are effects of interference?

resonant

Finite width and interference (cont'd)

- Here: use the "real singlet extension" of the SM Higgs sector [1]
 - besides H there is only one additional (heavy) Higgs boson X; both states mix with an angle α
 - X has SM-like couplings to fermions and vector bosons multiplied by sin α; X→HH governed by trilinear coupling parameter λ_{HHX}
- Quantities to study:

• relative width: $\frac{\Gamma_X}{m_X}$

• relative effect of interference: $R_{int} = \frac{\sigma^{full} - (\sigma^{resonant-only} + \sigma^{nonresonant})}{\sigma^{resonant-only} + \sigma^{nonresonant}}$

[1] Following approach in: A. Papaefstathiou and G.White, JHEP 05 (2021) and JHEP 02 (2022) 185

Finite width and interference (cont'd)

- Studied as function of sin α and λ_{HHX} parameters
- Our measurement constrains $\sigma(pp \to X) \times$ $B(X \rightarrow HH)$
 - $\sin \alpha$ drives $\sigma(pp \to X)$, λ_{HHX} drives $B(X \to HH)$
 - \rightarrow explains shape of experimental exclusion
- Blue (-) and green (+) isolines indicate regions of strong interference effects
 - \rightarrow sizable values of R_{int} mostly in regions which are currently beyond our experimental sensitivity
 - \rightarrow some exceptions at large values of sin α , which are however in conflict with measured H couplings

arxiv:2403.16926

Finite width and interference (cont'd)

arxiv:2403.16926

- Also the "line shape" of the signal ($= \sigma_{full} \sigma_{nonres}$) is affected by the interference
 - examples for $R_{int} = \pm 0.2$
- Destructive interference
 → peak-dip effect (or reversed)
- Constructive interference
 → peak-tail effect
- → Strong shape modifications occur in parameter regions which are yet beyond our sensitivity
- ➔ Could become relevant for HL-LHC

- Comprehensive set of measurements searching for resonant H production in VH, HH and YH decay modes
 - strong experimental constraints, in particular through recent combinations
 - interpretations in extended Higgs sector, warped extra dimension and heavy vector triplet models
 - projections towards HL-LHC
 - novel study of finite width and interference effects
 - many more results can be found in the comprehensive review article

arxiv:2403.16926

- Further results from full Run 2 are still emerging (two were shown)
- Run 3 is progressing, HL-LHC on the horizon \rightarrow next levels of precision

→ Exciting research program ahead!

Outlook

Projection of X→HH combination towards HL-LHC

Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

$X \rightarrow H/Y(\gamma\gamma)H(\tau\tau)$ and $H/Y(\tau\tau)H(\gamma\gamma)$

Events / 2 GeV

- Next level: non-bb Y decays
- γγττ: small branching fraction but clean signature and background situation
- Parametric neural network in (M_X, M_Y) for event classification
- Signal extraction in $m_{\gamma\gamma}$ distributions
- Resonant backgrounds from
 - single H production
 - Drell-Yan with *Z* → *ee* mis-identified as photons

 $X \rightarrow H(\gamma \gamma)H(\tau \tau)$, spin 0 $M_X = 366 \ GeV$

CMS Preliminary

 $X_{366}^{(0)} \rightarrow HH \rightarrow \gamma\gamma\tau\tau$

Cat 0

7

3

138 fb⁻¹ (13 TeV)

CMS Preliminary

 $X \to Y(\gamma \gamma) H(\tau \tau)$ $M_X = 525 \ GeV, \ M_Y = 115 \ GeV$

138 fb⁻¹ (13 TeV)

$X \rightarrow H/Y(\gamma\gamma)H(\tau\tau)$ and $H/Y(\tau\tau)H(\gamma\gamma)$ (cont'd)

NEW

CMS PAS HIG-22-012

→ HH results: exclude bulk radion of $\Lambda_R = 2 T eV$ in full mass range (less stringent than combination)

→ YH results: particular sensitivity for low m_Y due to dedicated low-mass $\gamma\gamma$ trigger

$X \rightarrow H/Y(\gamma\gamma)H(\tau\tau)$ and $H/Y(\tau\tau)H(\gamma\gamma)$ (cont'd)

NEM

NMSSM interpretation

- In the NMSSM interpretation, Y might be largely a singlet Higgs boson with strongly suppressed couplings to SM particles
 - $Y \rightarrow \gamma \gamma$ still possible via chargino loop
 - ➔ dominant decay mode
- → Excluding a wide range of hitherto allowed cross sections for $M_X \le 600 \text{ GeV}$

CMS PAS HIG-22-012

HVT couplings from $V' \rightarrow VH$ and other channels

- For Drell-Yan production, strong exclusions in g_F , g_H parameter space
 - except in the very low g_H region, which is however accessible by fermionic modes (like $W' \rightarrow \ell \nu$)
 - models A and B excluded for $m_{V'} = 2 T eV$
- For model C (exclusively VBF production), data set not sufficient to exclude couplings below $g_H = 3$

X→VH: low-mass vs high mass regions

- m < 1 TeV: extended Higgs sector searches (e.g. A)
- m > 1 TeV: searches for heavy vector bosons

X→YH: NMSSM theory vs HL-LHC projection

Tables of analyses in review article

Target final state		Ref.	Mass coverag	e (GeV)	Comment
V	Н		m_{χ}		
$Z(\ell \ell)$	ττ	[107]	220-400		
$Z(\ell\ell + \nu\nu)$	bb	[108]	225 - 1000		resolved jets
$\mathrm{W}(\ell u)$	bb	[109]	1000 - 4500		$W \rightarrow \ell \nu$ and merged bb jet
$\operatorname{Z}(\ell\ell)$	bb	[110]	800 - 4600		$Z \rightarrow \ell \ell / \nu \nu$ and merged bb jet
Z(qq)	bb	[111]	1300 - 6000		two merged jets
H	Н		$m_{\rm X}$		
bb	$W(\ell\nu)W(\ell\nu+qq)$	[112]	250 - 900		resolved + merged
bb	$W(\ell\nu)W(\ell\nu + qq)$	[113]	800 - 4500		merged
WW + au au	WW + au au	[114]	250 - 1000		multilepton final state
					-
Y	Н		m_{χ}	$m_{ m Y}$	
bb	au au	[115]	240 - 3000	60-2800	resolved jets and $ au$ leptons
bb	$\gamma\gamma$	[116]	300 - 1000	90-800	resolved jets and photons
bb	bb	[117]	900 - 4000	60-600	two merged bb jets

X→HH: ATLAS vs CMS

[1] ATLAS Collaboration, "Combination of searches for resonant Higgs boson pair production using pp collisions at $\sqrt{s} = 13 TeV$ with the ATLAS detector", arXiv:2311.15956, Phys. Rev. Lett. 132 (2024) 231801

X→HH projections

Expected discovery significance for a spin-0 resonance

X→HH: projected MSSM interpretations

NMSSM vs TRSM projection

$X \to HH/YH \to (bb)(\gamma\gamma)$

JHEP 05 (2024) 316

- Simultaneous two-dimensional (2D) fit to $(m_{\gamma\gamma}, m_{jj})$ distribution in all categories
- The largest deviation from background-only hypothesis with local (global) significance of $3.8\sigma (\leq 2.8\sigma)$ is observed for $m_X = 650 \text{ GeV}$ and $m_Y = 90 \text{ GeV}$

DESY. | Search for Higgs boson production through resonance decays | Rainer Mankel (DESY) | 2 September 2024

Higgs boson: discovery and exploration

- 2012: Observation of the Higgs boson by ATLAS and CMS
 - initially in di-boson decay modes
- 2016: Run 1 couplings combination (ATLAS+CMS)
 - properties found to be SM-like within current precision
- 2017-18: Discovery of 3rd generation Yukawa couplings
 - via $H \rightarrow \tau \overline{\tau}$ and $H \rightarrow b \overline{b}$ decays, ttH production

• Now: precision measurements with full Run 2 data

Higgs boson production and decay

