B-Physics - Rare decays in CMS

Imperial College London

Giacomo Fedi

on behalf of the CMS Collaboration

ICNFP2024: XIII International Conference on New Frontiers in Physics detectors 26 August - 4 September 2024

Outline

CMS relevant/recent rare decay analyses:

- $B \rightarrow \mu\mu$ Branching Fractions and $B_s \rightarrow \mu\mu$ Effective Lifetime
- B⁰→K^{*0}µµ Angular Analysis
- J/ψ→μμμμ Decay
- $D^0 \rightarrow \mu \mu$ Branching Fraction

CMS Detector

Compact Muon Solenoid

General purpose LHC experiment

B-physics: excellent muon resolution and p_T range

For muons p_T up to 100GeV 1% resolution in the barrel region, 3% in the endcaps

DAQ in CMS

<u>arxiv2403.16134</u>

Standard DAQ

- L1 Trigger, ASIC/hardware trigger 100kHz
- HLT Trigger, computer batch 1kHz
- Data scouting
 - Reduced the event size by saving HLT information
 - Avoids the HLT data buffering bottleneck
 - Analysis example: η→μμμμ observation [Phys. <u>Rev. Lett. 131, 091903</u>]
- Data parking
 - Exploits the computational margin arising from the LHC fill luminosity decay
 - Event are reconstructed later in time and saved on tape
 - Avoids the reconstruction resources bottleneck
 - During Run2 (2016-2018) recorder 10¹⁰ B collisions

Swagata's talk on Wednesday

$B_s \rightarrow \mu\mu$ and $B^0 \rightarrow \mu\mu$ decays are highly

Phys.Lett.B842(2023)137955

suppressed in the SM

- Involve flavour-changing neutral current (FNCN) transitions
- Helicity suppressed
- Can occur via high-oder EW diagrams (loop)
- B⁰→µµ BF further suppressed by CKM matrix element by 20x
- Theoretical predictions of the Branching Fractions are precise, any deviation might be a hint of NP particles present in the loop diagrams
- B_s→µµ effective lifetime measurement gives another handle to check the presence of NP: the decay is CP-even and without the CP violation the lifetime corresponds to the B_{sH} state

B \rightarrow $\mu\mu$ **Branching Fractions**

Phys.Lett.B842(2023)137955

140 fb⁻¹ (13 TeV)

Semileptonic bkg

Full PDF

 $B^0 \rightarrow \mu^+ \mu^-$

Analysis details

- Standard DAQ, dimuon trigger
- Extensive use **BDTs** for muon identification (fake reduction) and signal selection
- 2016→2018 data at √s = 13TeV
- BFs normalised with respect to $B^+ \rightarrow J/\psi K^+$ channel
- UML fit (mass, mass uncertainty) on 16 categories
 - Rapidity, data taking period, BDT output

$$\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) = \left[3.83^{+0.38}_{-0.36}(\textit{stat})^{+0.19}_{-0.16}(\textit{syst})^{+0.14}_{-0.13}(\textit{f_s/f_u})\right] \times 10^{-9}$$

$${\cal B}(\mathrm{B}^0 o \mu^+ \mu^-) < 1.9 imes 10^{-10}$$
 @ 95% CL

CMS

/////

Data

 $B_s^0 \rightarrow \mu^+\mu^-$

----- Peaking bkg

----- Combinatorial bkg

140

120

80

60

40

20

2010

Entries / 0.05

$B_s \rightarrow \mu \mu$ Effective Lifetime

Phys.Lett.B842(2023)137955

Analysis details

- Lifetime efficiency derived from simulation
- Main systematics due to the correlation of between the BDT and the decay time
- Result:

 $au = 1.83^{+0.23}_{-0.20}(\textit{stat})^{+0.04}_{-0.04}(\textit{syst}) \; \text{ps}$

- In agreement with the SM [τ_{H} =1.62 ps]
- Needs more data to be able to discriminate between B_{sH} and B_{sL} states

$B^0 \rightarrow K^{*0} \mu \mu$ introduction

Angular analysis of the decay channel $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with K^{*0} decaying into $K\pi$

- Motivation: angular distributions can be defined as function of Wilson coefficients.
- Angular variables: θ_{K} , θ_{I} , φ
- Distribution measured in q² bins: invariant mass squared of the dimuon system

• CP-averaged observables: FL, Pi, Pj'

$$\begin{split} \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2d\cos\theta_l d\cos\theta_K d\phi} &= \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right. \\ &\quad + \left(\frac{1}{4} (1-F_L) \sin^2\theta_K - F_L \cos^2\theta_K \right) \cos 2\theta_l \\ &\quad + \frac{1}{2} P_1 (1-F_L) \sin^2\theta_K \sin^2\theta_l \cos 2\phi \\ &\quad + \sqrt{(1-F_L)F_L} \left(\frac{1}{2} P_4' \sin 2\theta_K \sin 2\theta_l \cos\phi + P_5' \sin 2\theta_K \sin\theta_l \cos\phi \right) \\ &\quad - \sqrt{(1-F_L)F_L} (P_6' \sin 2\theta_K \sin\theta_l \sin\phi - \frac{1}{2} P_8' \sin 2\theta_K \sin 2\theta_l \sin\phi) \\ &\quad + 2P_2 (1-F_L) \sin^2\theta_K \cos\theta_l - P_3 (1-F_L) \sin^2\theta_K \sin^2\theta_l \sin2\phi) \right] \end{split}$$

B⁰→K^{*0} $\mu\mu$ angular analysis

Analysis details

CMS-PAS-BPH-21-002

- 2016 to 2018 standard DAQ data
- Signal from resonant K^{*0} and non resonant $K\pi$ (S-wave)
- KDE angular efficiencies modelled on simulated events
- Maximum likelihood fit in bins of q² of the signal and background pdf
- Fit validated in control regions J/ ψ and ψ (2S)

$B^0 \rightarrow K^{*0} \mu \mu$ results 1/2

Results

CMS-PAS-BPH-21-002

- Tensions in some bins of P5' and P2
 - Flavio: local form-factors (LQCD and Light-Cone Sum Rule) + non-local form-factors (QCDF)
 - EOS: local form-factors (LQCD and LCSR), novel parametrisation of non-local form-factors

$B^0 \rightarrow K^{*0} \mu \mu$ results 2/2

Results

CMS-PAS-BPH-21-002

• Statistical agreement with previous measurements

J/ψ→µµµµ introduction

Phys. Rev. D 109

Motivations

- BESII already reported the observation of $J/\psi \rightarrow ee\mu\mu$ and $J/\psi \rightarrow eeee$, setting an upper limit for the $J/\psi \rightarrow \mu\mu\mu\mu$ decay channel. [Phys. Rev. D 109, 052006]
- Very clean and precise theoretical BF prediction B(J/ψ→μμμμ) = (9.74 ± 0.05) × 10⁻⁷ [Phys. Rev. D 104, 094023]

Analysis details

- Use of B parked Run2 data taken in 2008
- Efficiency measured on simulations
- BF measured relative to the $J/\psi \rightarrow \mu\mu$ BF
- ML fit of the 4-muon and di-muon invariant mass

$$\frac{\mathcal{B}(\mathrm{J}/\psi \to \mu^+\mu^-\mu^+\mu^-)}{\mathcal{B}(\mathrm{J}/\psi \to \mu^+\mu^-)} = \frac{N(\mathrm{J}/\psi \to \mu^+\mu^-\mu^+\mu^-)}{N(\mathrm{J}/\psi \to \mu^+\mu^-)} \left/ \frac{\epsilon_{\mathrm{J}/\psi \to \mu^+\mu^-\mu^+\mu^-}}{\epsilon_{\mathrm{J}/\psi \to \mu^+\mu^-}} \right)$$

J/ψ→µµµµ results

Phys. Rev. D 109

Results

- **Observation** of the $J/\psi \rightarrow \mu\mu\mu\mu$ decay
- Results consistent with the SM predictions

$$\frac{\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-)}{\mathcal{B}(J/\psi \to \mu^+ \mu^-)} = [16.9^{+5.5}_{-4.6} \text{ (stat)} \pm 0.6 \text{ (syst)}] \times 10^{-6}.$$

$$\mathcal{B}(J/\psi \to \mu^+ \mu^- \mu^+ \mu^-) = [10.1^{+3.3}_{-2.7} \text{ (stat)} \pm 0.4 \text{ (syst)}] \times 10^{-7},$$

$D^{0} \rightarrow \mu \mu$ introduction

Motivations

- Particular attention has been put on the b→s transition, see B→µµ, while c→u transitions are less studied at LHC
- $D^0 \rightarrow \mu \mu$ decay channel is suppressed as it is a **FCNC process**
- SM predictions not particularly reliable, but expected to be very small ℬ(D⁰→μμ)=3 × 10⁻¹³
- New Physics can increase the BF

Analysis details

- Based on data collected using the **B parking DAQ in 2022-2023**
- $D^0 \rightarrow \mu \mu$ reconstructed from $D^{*+} \rightarrow D^0 \pi^+$ for BG reduction
- After basic preselection (+dimoun trigger) a selection based on BDT output is applied
- BF measured fitting the D⁰ peak and the difference of mass between D^{*+} and D⁰ (Δm)
- BF normalised with respect to the $D^0 \rightarrow \pi \pi$ decay

$D^{0} \rightarrow \mu \mu$ normalisation channel

$$\mathcal{B}(D^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(D^{0} \to \pi^{+}\pi^{-}) \frac{N_{D^{0} \to \mu^{+}\mu^{-}}}{N_{D^{0} \to \pi^{+}\pi^{-}}} \frac{\varepsilon_{D^{0} \to \pi^{+}\pi^{-}}}{\varepsilon_{D^{0} \to \mu^{+}\mu^{-}}}$$

Normalisation channel

• 195 signal events extracted

Results

- Best upper limit to date
- Compatible with the SM

 $\mathcal{B}(D^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-9} \text{ at } 95\% \text{ CL.}$ $\mathcal{B}(D^0 \to \mu^+ \mu^-) = (1.0 \pm 0.9) \times 10^{-9},$

Conclusions

CMS pretty competitive experiment for B-physics rare search decays in muons:

- $B \rightarrow \mu\mu$ Branching Fractions and $B_s \rightarrow \mu\mu$ Effective Lifetime
 - Best single measurement
- $B^0 \rightarrow K^{*0} \mu \mu$ angular analysis
 - Best measurement to date
- $J/\psi \rightarrow \mu\mu\mu\mu$
 - First observation
- $D^0 \rightarrow \mu \mu$
 - Best upper limit to date