Electroweak measurements (CMS)

Cristina-Andreea Alexe On behalf of the CMS Collaboration

International Conference on New Frontiers in Physics 2024, Kolymbari | 28 Aug 24

Introduction

Why study Electroweak Physics at hadron colliders?

- Large W, Z, y production in pp collisions
- Very clean experimental signature with e, µ ID eff. uncertainty <1% and momentum scale uncert. ~ 0.1%

What can we study?

Precision Frontier

Precise theoretical predictions of EW parameters: α_{OED} , G_F, m_z and m_H \rightarrow **NP from deviations** in precision measurements

Energy frontier

At high energy, deviations from gauge cancellations could lead to possibly large effects \rightarrow test in **multi**bosons production: anomalous couplings, EFT, Higgs properties, ALP etc.

- Test QCD predictions + probe PDFs
- Background for other searches: Higgs, BSM

M_w [GeV]

80.45

80.4

80.35

 $\sin^2(\theta_{1,\mu}^{\dagger})$ and Z widths measurements $\sin^2(\theta^{T})$ and M measurements

 $\sin^2(\theta_{eff}^f) = 0.23153 + 0.00016$

M_w = 80.362 ± 0.014 GeV

ICNFP 2024, Kolymbari

W and Z cross-sections at 5.02 TeV and 13 TeV

<u>SMP-20-004</u>

- Electron and muon decay modes considered
- Used dedicated low luminosity runs
- Cross-section and cross-section ratios from fitting m_{ll} and m_{T} distributions from Z and W

consistency with theory

• Errors dominated by systematics, particularly from luminosity at 1.9% (2.3%) for 5.02 TeV (13 TeV)

 $W \rightarrow h / Z \rightarrow l^{+}$

0.9

CMS

CMS, 206 pb⁻¹ (13 TeV) CMS, 18.2 pb⁻¹ (8 TeV)

1 (5.02 TeV

CMS, 5.4 pb⁻¹ (2.76 TeV) CDF, 72.0 pb⁻¹ (1.96 TeV)

CMS, 36 pb⁻¹ (7 TeV)

D0. 84.5 pb⁻¹ (1.8 TeV)

UA2, 7.8 pb⁻¹ (0.63 TeV)

[qd] 8 10⁵

10⁴

×

0.9620± 0.0036 tot 0.008

1.1

0.9595+0.0030

Theory / Measured Ratio of σ_{13TeV}^{tot} / $\sigma_{5.02TeV}^{tot}$

Z cross-section at 13.6 TeV

- Muon decay modes considered
- In agreement with theory calculations
- Statistical uncertainty is negligible

Source	Uncertainty (%)
Muon efficiencies	0.83
PDF, QCD scale and parton shower	0.53
Finite size of MC samples (bin-by-bin)	0.35
tt background	0.16
EWK background	0.12
Pileup	0.08
Muon momentum correction	0.08
Combined syst. uncertainty	0.92
Luminosity	2.3
Stat. uncertainty	0.06

Cristina Alexe

Drell-Yan forward-backward asymmetry and $\sin^2 \theta_{eff}^{t}$ at 13 TeV

- **Precisely known** in SM $\sin^2 \theta_{\rm eff}^{\ell} = k_f \left(1 \frac{m_W^2}{m_Z^2} \right)$
- Access from final state leptons angular distribution in the Collins-Soper frame

$$\frac{d\sigma}{d(\cos\theta_{CS})} \propto 1 + \cos^2\theta_{CS} + A_4 \cos\theta_{CS} \text{ where } A_{FB} = \frac{3}{8}A_4 \text{ depends on } \sin^2\theta_{eff}^{\ell}$$

- Electrons divided according to |η| into: central (e) → silicon tracker forward ECAL (g) forward HCAL (h)
- Good data/MC agreement across the phase space

Drell-Yan forward-backward asymmetry and $\sin^2 \theta_{eff}^{\ell}$ at 13 TeV

- Extract $\sin^2 \theta_{eff}^{\ell}$ from **template fits of A_{FB}** depending on mass and rapidity (y)
- Measuring lepton angles \rightarrow dependence on rapidity $y_{il} \rightarrow$ valence quarks are important

 \rightarrow A_{FB} measurement is sensitive to the PDF

Drell-Yan forward-backward asymmetry and $\sin^2 \theta_{eff}^{\ell}$ at 13 TeV

Cristina Alexe

SMP-22-010

 $-\Box - A^{w}_{FB}$ (no-prof)

 $A_{\rm FB}^{\rm W}$ CT18Z

0.234

calib

other

bg

eff

$Z \rightarrow 4\ell$ decays at 8 and 13 TeV

- Decays to e and µ considered
- B(Z→4ℓ) = 4.67 ± 0.11(stat) ± 0.10(sys)×10⁻⁶ → precision ~3%, **better than previous results** by CMS and ATLAS
- Measured **branching fractions &** differential decay rates consistent with SM
- **CP violation probed** through a tripleproduct asymmetry, consistent with SM
- Improved limits on NP as a scalar or vector boson mediating Z →4ℓ

Search for $Z \rightarrow \tau \tau \mu \mu$ at 8 and 13 TeV

- 1st search for Z→ττμμ @ the LHC
- No excess over SM background observed
- 1st time an upper limit at 95% CL was placed on the the ratio of the Z→ττµµ to Z→4µ branching fractions equivalent to 6.9 times the SM expectation of 0.90 ± 0.02
- The 1st constraints placed on all flavor-conserving 4lepton Wilson coefficients involving 2μ and 2τ

<u>SMP-22-016</u>

SMP-19-007

Measurement of the W \rightarrow cq/W \rightarrow q $\overline{q'}$ branching fraction ratio at 13 TeV

- Select events with 1 e or μ and minimum 4 jets (2 b-tagged)
- Charm jets tagged using the presence of a μ inside the jet

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- The result $R_c^W = \mathcal{B}(W \to cq) / \mathcal{B}(W \to q\bar{q}') = 0.489 \pm 0.020$ is consistent with SM and provides an **increase in precision by factor x2** to the world average
- The sum of squared elements in the **second row of the CKM matrix** determined at 0.970 ± 0.041
- Measured the **CKM matrix element** |Vcs|= 0.959 ± 0.021

Observation of $\gamma\gamma{\rightarrow}\tau\tau,$ limits on the anomalous EM moments of the τ

- τ leptons reconstructed in **leptonic and hadronic** decay modes
- Require events with taus back-to-back in the azimuthal direction and a minimum number of charged hadrons associated with their production vertex
- **First** observation **at pp collider** \rightarrow significance of 5.3 standard deviations!

- Constraints set on NP contributions to the anomalous magnetic moment $a_{\tau} = 0.0009^{+0.0032}_{-0.0031}$ and electric dipole moment $|d_{\tau}| < 2.9 \times 10^{-17} e$ cm (95% CL) of the $\tau \rightarrow$ consistent with SM
- Most stringent limit on the τ magnetic moment to date → nearly an order of magnitude better than previous best constraints

SMP-23-005

Measurement of the τ lepton polarization in Z boson decays at 13 TeV

- τ^- polarization $\mathcal{P}_{\tau} = (\sigma_+ \sigma_-)/(\sigma_+ + \sigma_-) = -0.144 \pm 0.015 \rightarrow \text{ in good agreement}$ with existing results
- **Most precise** measurement **at hadron colliders** \rightarrow reaches precision similar to ٠ the SLD experiment
- The polarization constrains the **effective couplings** of τ^- leptons to the Z boson and determines $\sin^2 \theta_{eff}^{\ell} = 0.2319 \pm 0.0019 \rightarrow \text{precision of } 0.8\%$ and independent of the Z production

SMP-18-010

80

Multiboson production: diboson

W+W- production at 13.6 TeV

<u>SMP-24-001</u>

- W decays to e/µ
- WW Signal region + 6 Control regions
- 1st time in pp collisions when WW events with at least two reconstructed jets are studied
- $\sigma_{WW} = 125.7 \pm 5.6 \text{ pb}$ compatible with predictions (QCD NNLO and EW NLO from MATRIX)

WZ production at 13.6 TeV

<u>SMP-24-005</u>

- Three lepton final state
- One of the cleanest diboson channels at the LHC
- σ_{WZ} = 55.2 ± 1.2(stat) ± 1.2(syst) ± 0.8(lumi) ± 0.1(theo) pb
 → good agreement with predictions (QCD NNLO and EW NLO from MATRIX)

ICNFP 2024, Kolvmbari

Multiboson production: diboson

$Z(\rightarrow \nu \overline{\nu})\gamma$ production at 13 TeV

<u>SMP-22-009</u>

- Most stringent limits on the anomalous Neutral Triple
 Gauge Coupling from CMS
- Select events with high-pT and missing transverse energy
- **BDT algorithm** to identify high-pT photons

Multiboson production: triboson

SMP-22-006

SMP-22-018

Observation of WWy production at 13 TeV

- 1st observation of WWy in pp collisions with 5.6 σ (5.1 σ) obs. (exp.)
- Fully leptonic final state
- Cross section for WWγ = 6.0 ± 0.8 (stat) ± 0.7 (syst) ± 0.6 (modeling) fb, in agreement with the NLO QCD prediction
- search for Hγ production and constrain Higgs couplings to light quarks

Process	σ upper limits obs. (exp.) [fb]	$\kappa_{\rm q}$ limits obs. (exp.) at 95% CL	$\overline{\kappa}_{q}$ limits obs. (exp.) at 95% CL
$u\overline{u} \to H + \gamma \to e\mu\nu_e\nu_\mu\gamma$	85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$	$\left \overline{\kappa}_{\mathrm{u}}\right \leq 7.5 \ (6.1)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	72 (58)	$ \kappa_{\rm d} \le 17000$ (14000)	$ \overline{\kappa}_{ m d} \leq 16.6$ (14.7)
$s\overline{s} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	68 (49)	$ \kappa_{ m s} \leq$ 1700 (1300)	$ \overline{\kappa}_{ m s} \leq$ 32.8 (25.2)
$c\overline{c} ightarrow H + \gamma ightarrow e \mu u_e u_\mu \gamma$	87 (67)	$ \kappa_{\rm c} \le 200 \ (110)$	$ \overline{\kappa}_{ m c} \leq 45.4$ (25.0)

WZy production at 13 TeV

• Limits on anomalous Quartic Gauge Coupling (aQGC)

Cristina Alexe

- Limits on photophobic axion-like particle models
- **Fully leptonic** final states $\Rightarrow \sigma_{\text{fiducial}}^{WZ\gamma} = 5.48 \pm 1.11 \text{ fb}$
- Good agreement with the NLO QCD prediction

Operators	Observed limits [TeV $^{-4}$]	Expected limits [TeV $^{-4}$]	Unitarity bound [TeV]
$F_{\rm T,0}/\Lambda^4$	[-2.60, 2.60]	[-2.52, 2.52]	1.32
$F_{\mathrm{T},1}/\Lambda^4$	[-3.28, 3.24]	[-3.18, 3.14]	1.48
$F_{\rm T,2}/\Lambda^4$	[-7.15, 7.05]	[-6.95, 6.85]	1.35
$F_{\rm T.5}/\Lambda^4$	[-2.54, 2.56]	[-2.46, 2.50]	1.55
$F_{\rm T.6}/\Lambda^4$	[-3.18, 3.22]	[-3.08, 3.14]	1.61
$F_{\mathrm{T,7}}/\Lambda^4$	[-6.85, 7.05]	[-6.65, 6.85]	1.71

ICNFP 2024, Kolymbari

W±W± scattering with one hadronic τ at 13 TeV

- Quartic electroweak coupling experimentally accessible in vector-boson scattering (VBS) and triboson production
- 1st study of a VBS process with a hadronic τ in the decay channel
- Deep neural network algorithms used to discriminate signal from the main backgrounds (fakes from jets)

- No deviation from SM expectations
- EFT analysis
- \rightarrow 1st dim-6 investigation with a VBS process
- \rightarrow 1st study of EFT operators with different dim

Summary

CMS has a large and varied Electroweak Physics programme

Precision frontier

- Tests of the Standard Model @ 8, 13 and 13.6 TeV
- New measurements of key EW parameters: $\sin^2 \theta_{eff}^{\ell}$ and Drell-Yan forward backward asymmetry, τ polarization
- Recent results reach/surpass the precision of LEP

Energy frontier

- Tests of the EW theory at highest energies in multiboson measurements
- $\rightarrow 1^{st}$ observation of $\gamma\gamma \rightarrow \tau\tau$ at a hadron collider
- $\rightarrow 1^{st}$ observation of WWy in pp collisions
- $\rightarrow 1^{st}$ study of a vector boson scattering process with a hadronic τ

Looking at the future

- Many results limited by **systematics**
- Need more precise PDFs → reached N3LO

More exciting EW measurements are under preparation @ CMS, stay tuned ! <u>cms-results</u>

C. Alexe acknowledges financial support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement N. 10100120)