The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

ICNFP2024

27th August 2024

Emily Duden On behalf of the ATLAS Collaboration

High Luminosity LHC

Emily Duden - Brandeis University

High Luminosity LHC

Current tracker will be replaced by the new all-silicon ATLAS Inner Tracker

Now: $<\mu >\approx 40$

HL-LHC: $< \mu > \approx 200$

- HL-LHC will have...
 - $L_{peak} \approx 7.5 \times 10^{34} cm^{-2} s^{-1}$
 - $L_{int} \approx 3000 \, f b^{-1}$
- Challenges:
 - 1. Radiation damage
 - 2. Detector occupancy and bandwidth saturation

Emily Duden - Brandeis University

ITk layout

ITk Strips TDR

- All-silicon
- Extended η coverage (<4.0)
- Better radiation tolerance, granularity, and trigger rate (1MHz)

ITk layout

- All-silicon
- Extended η coverage (<4.0)
- Better radiation tolerance, granularity, and trigger rate (1MHz)

- Pixel detector close to the beamline
 - talk by Martina Ressegotti next week

ITk layout

- All-silicon
- Extended η coverage (<4.0)
- Better radiation tolerance, granularity, and trigger rate (1MHz)

- Pixel detector close to the beamline
 - talk by Martina Ressegotti next week
- Strip detector surrounds pixels
 - 4 barrel layers and 6 endcap disks/forward region
 - 18K modules
 - 65M channels
 - 165 m² of silicon

Sensors

- AC coupled strips with n⁺ implants in ptype bulk
- Radiation-tolerant up to fluences of 1.6×10¹⁶neq/cm² [expected max 5.4× 10¹⁴neq/cm²]
- Smaller strip lengths for better occupancy
- In Production since August 2021
- Two types of barrel sensors:
 - Inner 2 layers Short-Strip (2.4 cm)
 - Outer 2 layers Long-Strip (4.8 cm)
 - Active area of 9.7×9.7cm² with 75.5μm pitch
- 6 endcap sensor geometries
 - 1.5-6cm strip length
 - 70 80 µm pitch

Power boards

• Powers front-end electronics and monitors and controls sub-detectors

Hybrids

Emily Duden - Brandeis University

Modules

- 1-2 sensors, 1-4 hybrids, 1 power board
 - Hybrid(s) & power board glued directly onto the sensor
- Biased up to -500V
- Production-ready, contingent upon resolution of "cracking" problem (slide 13)

Long Strip Barrel module

Endcap modules

Local support structures

Staves (barrel)

- Modules rotated \pm 26 mrad wrt beamline
- ➢ 28 modules/stave
- 392 total staves

End of Substructure Card

- > VTRx+: fibre-optic driver/receiver package
- > **IpGBT:** associated electrical transceivers
 - > communicates with off-detector electronics

Petals (endcaps)

- $\geq \pm 20 mrad$ stereo angle
- ➢ 6 disks/endcap
- ➢ 32 petals/disk
- > 12/modules/petal

ITk Strips TDR

Local support structures

- Modules are glued onto a lightweight carbon fiber support structure (core)
 - Mechanical support and thermal conductivity
 - Ti pipes for cooling
 - Copper/Kapton bus tape routes electrical services for modules

Stave core

Stave/petal loading

- Barrel loading sites: BNL, RAL
 - Different glue patterns + loading bridges
- Petal loading sites: DESY, Freiburg, Valencia, TRIUMF
 - Some difference in procedures, i.e. metrology
- General loading procedure
 - ➤Glue dispensed
 - \geq Modules placed within 50 μm accuracy
 - ➢ Final XYZ metrology scan

Quality control

- Modules + staves/petals must be extensively tested at every stage
 - Visual inspections + metrology
 - Hybrid burn-in
 - IV curves + electrical tests
 - Thermal cycling
- Electrical tests for QC
 - HVret current as a function of bias voltage (IV scans)
 - Calibrate front-end timing
 - Ensure channel uniform response
 - Characterize noise

Tests done at room temp and -35 °C

System tests

- Tests production chain with final parts and cooling
 - Powering chain, cooling infrastructure, electrical services, interlocks, DAQ systems...
- Used for long term DAQ and DCS development

Barrel system test @ CERN

- Hosts up to 8 staves
- 4 already installed

Endcap system test @ DESY

- Hosts up to 12 petals
- 1 installed

Emily Duden - Brandeis University

Sensor cracking

- Early HV breakdown on a fraction of modules during stave and petal cold tests, accompanied by noisy channels
 - Developed only after mounting on cores
 - Cracks typically around hybrid(s) and power board
- Coefficient of thermal expansion (CTE) mismatch between electronics, glue, and sensor
 - Hybrids and power board contract more than the sensor, causing curling
 - Sensor cannot curl up when glued to the support structure
- Module production halted while testing remediation strategies

Electrical signatures of cracks

Emily Duden – Brandeis University

Sensor cracking remediation

<u>Hysol loading glue</u>

- Use more rigid hysol glue to load modules onto staves/petals
- Stress reduction in simulation O(50%)
- Staves and petals still exhibit cracking when cycles 10 times to -35 °C

Stave loading with Hysol @ BNL

<u>Wide gap modules</u>

- Increase gap between hybrid and power board
- Not applicable to all module types
- Stress reduction in simulation O(10%)
- Hysol + wide gap module stave cycled 50x to -35 °C without cracks
 - Followed by cracking at -45 °C

<u>Interposers</u>

- Kapton interfaces between hybrid/power board flex & glue
- Stress reduction in simulation O(85-90%)
- Interposer modules, staves, + petals in development
- One interposer stave side cycled 10x to -45 °C without cracks

Cold noise

<u>Matt Kurth and</u> <u>Ian Dyckes</u> <u>TWEPP2023 talk</u>

- High noise below 0°C observed during module QC
 - Only strips under PB and hybrid affected
- Source determined to be capacitor vibrations on PB

Interposers for crack mitigation have been shown to eliminate cold noise!

Conclusions

- ITk will deliver similar or better tracking performance in the harsh HL-LHC environment
- Lots of work done so far
 - Years of prototyping and pre-production
 - Developed rigorous QC procedures and solved many problems along the way
- We are almost fully in production!
 - ITk Strips is in production or entering production for all components
 - ASICs and most sensors already manufactured
- Solving lingering issues
 - Cold noise mitigated
 - Cracking: promising use of interposers
- Let's build our detector! 😊

Looking forward to Production and Installation!

Backup: stave noise plots

Noise plots for one side of an LS barrel stave (14 modules)

Emily Duden - Brandeis University