The study of identified charged-hadron production at PHENIX

XIII International Conference on New Frontiers in Physics

Mariia Mitrankova for the PHENIX collaboration Stony Brook University

Stony Brook University

Invariant spectra shape

- Low p_T region exponential shape of the spectra (recombination)
- Higher p_T region power-law shape of the spectra (fragmentation)
- Additionally, it is customary to plot the invariant yields as a function of the transverse mass

$$m_T = \sqrt{p_T^2 + m^2}$$

The model of radially expanding thermalized systems

$$\frac{1}{\pi m_T} \frac{d^2 N}{dm_T dy} = \frac{1}{2\pi T (T + m_0)} \cdot A \cdot exp \frac{-(m_T - m_0)}{T}$$

 $\langle E_{kinetic} \rangle = \langle E_{thermal} \rangle + \langle E_{collectiv} \rangle$

$$T = T_0 + \langle u_t \rangle^2 \cdot m_0$$

 T_0 – kinetic freeze out temperature $\langle u_t \rangle$ – average collective velocity

4

Radial flow

XIII International Conference on New Frontiers in Physics

Invariant m_T spectra

Thermodynamic parameters

Kinetic freeze out temperatures and average collective velocities as a function of number of participants

$p_1 = 0.0345 \pm 0.0003, p_2 = 3196 \pm 342$

Error bars represent sums of systematic, statistic and fit uncertainties

K/π and p/π ratios Previous results in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

PRC 88, 024906, 2013

 $p_T > 1.5 \text{ GeV}/c$

Enhancement of p/π values

The p/π reach the value of 8.0

~ 2.5 larger than in p + p

- p/π strong centrality dependence
- K/π weak centrality dependence

p/π ratio in large collision systems Cu+Au and U+U

Large collision systems

- In central collisions p/π ratios reach the values of ≈ 0.6
- In peripheral collisions p/π ratios < 0.4
- Behavior of p/π ratios observed in Cu + Au and U + U collision systems can be qualitatively described using recombination models

p/π ratio in small collision systems p+Al and ³He+Au

- The values of p/π ratios \approx the values of ratios in p + p
- ³He + Au Modest centrality dependence, similar to that observed in d + Au collisions
- p + AI The values of p/π ratios in all centrality classes consistent with the ones in p + p

p+AI, ³He+Au, Cu+Au, and U+U

- systematic uncertainties
- strangeness-enhancement effect

• The values of K/π ratios show a modest centrality dependence, which is insignificant within

• The centrality dependence of K/π ratios in d + Au and Au + Au collisions was attributed to a

Comparison to AMPT and PYTHIA model calculations

AMPT – recombination + fragmentation Qualitatively (but not quantitatively) describes experimental data

PYTHIA – fragmentation Does't describe baryon enhancement

Comparison to AMPT and PYTHIA model calculations

QGP signatures were observed in small collision systems

- PHENIX Collaboration. Nature Physics, 15 (3), 2018
- PHENIX Collaboration. Phys. Rev. C 105, 064912 (2022)

• The QGP volume is not sufficient for observation of baryon enhancement in p+AI collisions

Integrated baryon to meson ratios

- Low- p_T region
 - Approximately independent of $\langle N_{part} \rangle$
- High- p_T region
 - Smoothly grow with increasing $\langle N_{part} \rangle$
- The \bar{p}/p ratio ≈ 0.73 and $\pi^-/\pi^+ \approx 1$, regardless of $\langle N_{part} \rangle \rightarrow$ the integrated p/π^+ ratios exceed the integrated $\bar{p}/\pi^$ ratios
- Increase of the recombination role in particle production with increasing number of participant nucleons $\langle N_{part} \rangle$

Nuclear modification factors Large collision systems

$$R_{AB} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{A+B}}{dp_T dy} \frac{d^2 N_{p+p}}{dp_T dy}$$

Cu + Au at $\sqrt{s_{NN}} = 200$ GeV and U + U at $\sqrt{s_{NN}} = 200$ GeV

- Hight p_T Similar suppression for all particle species Energy loss
- Intermediate p_T $R_{AB} (p + \bar{p})/2 > R_{AB} \phi > R_{AB} \pi$
- Low p_T

Similar suppression for all particle species Cold nuclear matter effects

Nuclear modification factors Small systems

$$R_{AB} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{A+B}}{dp_T dy} \frac{d^2 N_{p+p}}{dp_T dy}$$

Intermediate p_T

- p + AI $R_{AB} (p + \bar{p})/2 \approx R_{AB} \phi \approx R_{AB} \pi$
- ³He + Au $R_{AB} (p + \bar{p})/2 > R_{AB} \phi \approx R_{AB} \pi$

SUMMARY

- The values of freeze-out temperatures T_0 and average collective velocities $\langle u_t \rangle$ have been obtained
 - The T_0 values no dependence on the collision centrality and $\langle N_{part} \rangle$ values
 - The $\langle u_t \rangle$ values smoothly increase with increasing of $\langle N_{part} \rangle$ values
 - In collisions characterized by large $\langle N_{part} \rangle$ values collective effects are more pronounced than in collision systems with small $\langle N_{part} \rangle$ values
- Baryon enhancement in intermediate p_T range in central ³He+Au, Cu+Au, U+U
- Strangeness enhancement in intermediate p_T range in Cu+Au and U+U
- Observation of signatures, that can be attributed as an evidence of QGP formation, reveal a smooth transition from small to large collision systems and the nature of this transition needs further investigation

SUMMARY

- The values of freeze-out temperatures T_0 and average collective velocities $\langle u_t \rangle$ have been obtained
 - The T_0 values no dependence on the collision centrality and $\langle N_{part} \rangle$ values
 - The $\langle u_t \rangle$ values smoothly increase with increasing of $\langle N_{part} \rangle$ values
 - In collisions characterized by large $\langle N_{part} \rangle$ values collective effects are more pronounced than in collision systems with small $\langle N_{part} \rangle$ values
- Baryon enhancement in intermediate p_T range in central ³He+Au, Cu+Au, U+U
- Strangeness enhancement in intermediate p_T range in Cu+Au and U+U
- Observation of signatures, that can be attributed as an evidence of QGP formation, reveal a smooth transition from small to large collision systems and the nature of this transition needs further investigation

THANK YOU FOR YOUR ATTENTION!

