

Identified and strange hadron production and flow in O + Ocollisions at $\sqrt{s_{NN}} = 7$ TeV using various models

Jagbir Singh, M. U. Ashraf, A. M. Khan, A. Rana and S. Kabana

Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

email: jagbir@rcf.rhic.bnl.gov

- Introduction: Heavy-Ion Collisions
- Motivation
- Models: EPOS4 and AMPT
- Results:
 - Charge Particle Multiplicity
 - p_T -Spectra
 - Integrated Yield (dN/dy) and $\langle p_T \rangle$
 - Ratios
 - Anisotropic flow $(v_2, v_3 \text{ and } v_4)$
- Summary

Introduction: Heavy Ion Collisions

- *What are Heavy-Ion Collisions?* High-energy collisions between nuclei to create conditions similar to those just after the Big Bang.
- *Objective*: To study the Quark-Gluon Plasma (QGP), a state of matter where quarks and gluons are deconfined.
- *Importance*: Helps understand the strong interaction (QCD) and the phase transition from hadronic matter to QGP.

The evolution of a heavy-ion collision at LHC energies

ICNFP-2024, Jagbir Singh

Motivation

• Small systems exhibit similar behavior as that of Large systems at LHC — collectivity in small systems?

• O + O collisions can provide significant and timely opportunity to explore these effects

Models: EPOS4

- EPOS4: a multi-purpose event generator, based on parton-based Gribov-Regge Theory, using relativistic hydrodynamic simulation to mimic the fluid behaviour of the QGP.
 - •uses a unique approach to treat ALL systems $(e^+ + e^-, e^- + p, p + p, p + A, A + A)$
 - scattering approach, including parton saturation effects
 - secondary interactions based on a core-corona separation
 - •Hadrons and fluid, expands using viscous hydrodynamical, with final-state hadronic cascades
 - •Reproduces naturally many flow-like features (even in small systems)
- We generated approximately ~1.5 Millions events using full options of EPOS4

K. Werner et al., Phys. Rep. 350, 93 (2001) K. Werner, Phys. Rev. C 108, 064903 (2023) https://journals.aps.org/prc/pdf/10.1103/PhysRevC.109.034918 https://indico.in2p3.fr/event/26074/contributions/112639/attachments/71952/102635/Tuto_EPOS_RIVET-(HIC_School-2022).pdf

ICNFP-2024, Jagbir Singh

Models: AMPT

- **AMPT (A Multi-Phase Transport Model)** is a Monte Carlo transport model for pp and heavy ion collisions.
- Includes both initial partonic and final hadronic interactions, and the transition between these two phases of matter.
- We generated approximately 2.5 Millions events for both default and String Melting version of AMPT.

Z. W. Lin et al., Phys. Rev. C 72, 064901, 2005 https://indico.bnl.gov/event/4773/contributions/26332/attachments/21597/29571/ AMPT_final.pdf

S. Choudhury et al., , Eur. Phys. J. C 80, 383 (2020)

Centrality (%)

Results

Charged particle multiplicity distributions for EPOS4 and AMPT

- Pseudorapidity distributions
- Centrality classes: Reference multiplicity ($| \eta | < 0.5$)

Centrality (%)	EPOS		AMPT SM	
	${ m d}N_{ m ch}/{ m d}\eta$	$\langle N_{\rm part} \rangle \pm { m rms}$	$\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$	$\langle N_{\rm part} \rangle \pm { m rms}$
0-5	236.44 ± 0.14	27.86 ± 2.18	188.293 ± 0.043	29.00 ± 2.03
5-10	189.801 ± 0.13	25.05 ± 2.33	145.678 ± 0.038	26.78 ± 2.60
10-20	148.437 ± 0.08	21.44 ± 3.15	110.442 ± 0.023	23.24 ± 3.24
20 - 30	105.863 ± 0.07	16.87 ± 3.12	76.0851 ± 0.019	18.54 ± 3.26
30-40	75.027 ± 0.06	12.44 ± 2.56	51.4713 ± 0.016	14.33 ± 3.05
40-50	53.037 ± 0.05	9.60 ± 2.52	34.1878 ± 0.013	10.80 ± 2.75
50-60	37.146 ± 0.06	6.98 ± 2.3	22.0823 ± 0.010	7.99 ± 2.40
60 - 80	19.889 ± 0.02	4.49 ± 1.96	11.1169 ± 0.005	4.94 ± 2.00
80 - 100	5.127 ± 0.01	1.89 ± 1.53	3.76107 ± 0.003	2.63 ± 1.03

Transverse momentum (p_T) **spectra at mid rapidity**

9

- Pions: lightest hadrons most abundance
- Low-*p_T* : Mass-dependent behavior (identified);
- Suppressed production of ϕ compared to Λ , clear violation of mass ordering
- Intermediate- p_T : Spectra converges; due to radial flow effects
- Steeper slope: heavy particles

03/09/2024

ICNFP-2024, Jagbir Singh

Integrated Yield (*dN*/*dy***)**

- Integrated Yield (dN/dy): Increasing with increasing $\langle dN_{ch}/d\eta \rangle$
- Abundance of Pions: aligns with the predictions of thermalized Boltzmann production of secondary particles
- Strangeness: Yield decreases with increasing number of strange quark
- EPOS4 > AMPT-SM (AMPT-Def)

M. U. Ashraf et al., <u>arXiv:2402.13843</u>, 2024 M. U. Ashraf, J. Singh et al., <u>arXiv:2406.04096</u>, 2024

Mean transverse momentum ($\langle p_T \rangle$)

• $\langle p_T \rangle$: Increases with mass

- Increasing trend in $\langle p_T \rangle$
- peripheral to central
- increase in radial flow

- Increasing $\langle p_T \rangle$ with increasing center-of-mass energy
- O + O collisions follow the trend

Measurements of ratios to pions

ALICE physics projections for a short oxygen-beam run at the LHC, ALICE, 2021

• Projection of ALICE O+O collisions at $\sqrt{s_{NN}} = 6.37$ TeV compared with pp, p-Pb and Pb-Pb collisions

- p_T -integrated ratios relative to pions
- None of the model quantitatively describe this yield ratio
- EPOS4: describe strangeness enhancement

Predictions of p_T -differential particle ratios

- Particle ratios:
 - direct probe
 - relative abundances
 - dynamics of the underlying quark constituents
- K/π , Λ/π , ϕ/π and Ξ/π : Strangeness enhancement
- p/π (Λ/K_s^0): (higher) relative production of baryons (strange) compared to mesons (strange)
 - Baryon enhancement at intermediate p_T in central collisions— recombination

INSTITUTO DE ALTA INVESTIGACIÓN

Anisotropic flow (v_2 , v_3 and v_4) versus N_{ch}

ALICE physics projections for a short oxygen-beam run at the LHC, ALICE, 2021

- Projection of ALICE for O+O collisions at $\sqrt{s_{NN}} = 6.37$ TeV compared with pp, p-Pb and Pb-Pb collisions.
- Anisotropic Flow $(v_2, v_3 \text{ and } v_4)$ vs. N_{ch}
 - Q-Cumulant method
 - multiplicity overlap (bridges between small and large system)

S. Acharya et al., ALICE, Phys. Rev. C, 123, 142301 (2019) A. Bilandzic et al., Phys. Rev. C **83**, 044913, 2011

Summary

- We present predictions of various observables for identified (π, K, p) and (mutli-)strange hadrons $(K_s^0, \Lambda, \Xi^-(\Xi^+), \phi, \text{ and } \Omega^-(\Omega^+))$ in O + O collisions at $\sqrt{s_{NN}} = 7$ TeV using the recently updated hydrodynamics-based EPOS4, AMPT-SM and AMPT-Default.
- Yield of identified and (multi-)strange hadrons increase with collision centrality

• decreases systematically with increasing number of strange quarks

- $\langle p_T \rangle$ increases from peripheral to central collisions:
 - More radial flow in central collisions.
- p_T -integrated ratios:
 - EPOS4 predict relative larger enhancement for (multi-)strange baryons while preforms well for strange hadrons

• none of the models quantitatively describe the strangeness enhancement

• Anisotropic flow $(v_2, v_3 \text{ and } v_4) \text{ vs } N_{ch}$

• AMPT-Def prediction is better and close to pp, p-Pb and Pb-Pb

- Interestingly, final state multiplicity overlap is observed
- It would be interesting to investigate strangeness enhancement with the experimental data and extended AMPT model when available.

Thank you for your attention!!