Cosmology from the DESI Year 1 Baryon Acoustic Oscillations

Measurements

Uendert Andrade Leinweber Fellow @ University of Michigan On behalf of the DESI collaboration XIII The International Conference on New Frontiers in Physics @ Crete, Greece - Aug 28, 2024.

INSTRUMENT

The Dark Energy Spectroscopic Instrument (DESI) Overview

- What is DESI? What does it do? How does it do it?
- **DESI observables**
 - BAO measurements
 - Full Shape measurements
- Blind Watchers of the Sky
- Cosmological Constraints from DESI BAO

The Dark Energy Spectroscopic Instrument (DESI)

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

13.5 million Bright Galaxies (0.0 < z < 0.4)

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

16 million Emission Line Galaxies (0.6 < z < 1.6)

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

Uendert Andrade (UMichigan)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

DESI Survey: Making the Largest 3D Map of the Universe

U.S. Department of Energy Office of Science

3 million Quasars (0.9 < z < 2.1)+ Ly-a forest (2.1 < z)

16 million Emission Line Galaxies (0.6 < z < 1.6)

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

3 million Quasars (0.9 < z < 2.1)+ Ly-a forest (2.1 < z)

16 million Emission Line Galaxies (0.6 < z < 1.6)

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

From 2021-2026 DESI will measure precise redshifts to ~40 million galaxies over 14,000 deg2.

Uendert Andrade (UMichigan)

Key DESI Components

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

4m Mayall Telescope, KPNO, Arizona, USA

Wide Field Corrector 8 sq. deg. Field of View

Designed to optimize survey throughput:

- 5,000 fibers, wide field corrector, 10 spectrographs
- remotely controlled fiber positioners; align, position, readout in parallel

dynamic field selection, exposure time calculator, autofocus
Uendert Andrade (UMichigan)

Focal Plane with 5,000 Fiber Positioners

10 Multi-Object Spectrographs

Fiber assignment before DESI

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Process of plugging optical fibers into plates for observations for the Sloan Digital Sky Survey (SDSS)

Each plate can take anything from 30 mins to several hours to be plugged by the expert SDSS Plate Pluggers.

Fiber assignment before DESI

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Process of plugging optical fibers into plates for observations for the Sloan Digital Sky Survey (SDSS)

Each plate can take anything from 30 mins to several hours to be plugged by the expert SDSS Plate Pluggers.

Automated dance of 5000 robotic positioners

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

University of Michigan undergraduate Clara Mateju doing a stage 1 assembly. Image credit: Curtis Weaverdyck

Automated dance of 5000 robotic positioners

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

University of Michigan undergraduate Clara Mateju doing a stage 1 assembly. Image credit: Curtis Weaverdyck

Instrument design

U.S. Department of Energy Office of Science

INSTRUMENT

Credit: LBL/KPNO/NOIRLab/NSF/AURA

Instrument design

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Credit: LBL/KPNO/NOIRLab/NSF/AURA

Overall, DESI surpasses its predecessors in terms of speed and quality of data:

- **One single night collects 200,000 extragalactic redshifts** 2001 and 2006)
- Ten times faster to collect photos than SDSS

Uendert Andrade (UMichigan)

(same order as the entire 6dF Galaxy Survey (6dFGS), which operated between

The largest 3D map of our Universe to date, constructed by DESI

A slice of galaxy positions from DESI's Year One data, colored by galaxy type. The magnified section is colored by declination, which spans 14 degrees. Colormap from cmastro.

DESI observables

U.S. Department of Energy Office of Science

3 million Quasars (0.9 < z < 2.1)+ Ly-a forest (2.1 < z)

16 million Emission Line Galaxies (0.6 < z < 1.6)

8 million Luminous Red Galaxies (0.4 < z < 1)

13.5 million Bright Galaxies (0.0 < z < 0.4)

From 2021-2026 DESI will measure precise redshifts to ~40 million galaxies over 14,000 deg2.

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

3 million Quasars (0.9 < z < 2.1)+ Ly-a forest (2.1 < z)

13.5 million Bright Galaxies (0.0 < z < 0.4)

From 2021-2026 DESI will measure precise redshifts to ~40 million galaxies over 14,000 deg2.

Uendert Andrade (UMichigan)

o Baryon Acoustic Oscillations

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

INSTRUMENT

- Gravity and pressure generated sound waves in the primordial plasma
- When baryons and photons decoupled, the sound waves stopped

Uendert Andrade (UMichigan)

Baryon Acoustic Oscillations (BAO)

INSTRUMENT

- Gravity and pressure generated sound waves in the primordial plasma
- When baryons and photons decoupled, the sound waves stopped

Uendert Andrade (UMichigan)

Baryon Acoustic Oscillations (BAO)

INSTRUMENT

- Gravity and pressure generated sound waves in the primordial plasma
- When baryons and photons decoupled, the sound waves stopped

Uendert Andrade (UMichigan)

Baryon Acoustic Oscillations (BAO)

14

How do we learn cosmology from BAO?

U.S. Department of Energy Office of Science

- field, e.g., BGS, LRG, ELG, QSO, Lya)
- Work out distances to the tracers.
 - \blacksquare If we know the characteristic scale from r_d early physics probes such as CMB or BBN, we measure absolute distances.
 - \blacksquare Otherwise, we measure distances in units of r_d .
- Infer cosmology

Uendert Andrade (UMichigan)

Measure angular positions, and redshifts of tracers (of the underlying matter density)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

How do we learn cosmology from BAO?

U.S. Department of Energy Office of Science

- field, e.g., BGS, LRG, ELG, QSO, Lya)
- Work out distances to the tracers.

 \rightarrow If we know the characteristic scale from r_d early physics probes such as CMB or BBN, we measure absolute distances. Calibrated BAO

Otherwise, we measure distances in units of r_d .

Infer cosmology

Uendert Andrade (UMichigan)

Measure angular positions, and redshifts of tracers (of the underlying matter density)

Un-Calibrated BAO

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

How do we learn cosmology from BAO?

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

From (ra, dec, z) to Ω_i – Cosmo parameters

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Uendert Andrade (UMichigan)

From (ra, dec, z) to Ω_i – Cosmo parameters

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

Uendert Andrade (UMichigan)

Blind Watchers of the Sky

Blinding? In cosmology?

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

... what's the point ???

Credit slide: Samuel Brieden

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Bandwagon effect

U.S. Department of Energy Office of Science

INSTRUMENT

and **beliefs** rallying amongst the public. [Wikipedia]

The bandwagon effect is a psychological phenomenon where people adopt certain behaviors, styles, or attitudes simply because others are doing so. More specifically, it is a cognitive bias by which public opinion or behaviors can alter due to particular actions

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Bandwagon effect

U.S. Department of Energy Office of Science

INSTRUMENT

The bandwagon effect is a psychological phenomenon where people adopt certain behaviors, styles, or attitudes simply because others are doing so. More specifically, it is a cognitive bias by which public opinion or behaviors can alter due to particular actions and beliefs rallying amongst the public. [Wikipedia]

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

How is the DESI BAO analysis different?

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

- The data! already the biggest ever BAO dataset (both in and volume)
- Blind analysis to mitigate observer/confirmation biases (catalogue-level blinding)
- Theory developments in BAO fitting procedure
- New and improved reconstruction methods
- Unified BAO pipeline applied to all tracers/redshifts consistently
- Wide-ranging tests of systematic errors, done before unblinding
- New combined tracer method used for overlapping galaxy samples (LRG and ELG in 0.8 < z < 1.1

How is the DESI BAO analysis different?

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

SPECTROSCOPIC

- The data! already the biggest ever BAO dataset (both in and volume)
- Blind analysis to mitigate observer/confirmation biases (catalogue-level blinding)
- Theory developments in BAO fitting procedure
- New and improved reconstruction methods
- Unified BAO pipeline applied to all tracers/redshifts consistently
- Wide-ranging tests of systematic errors, done before unblinding
- New combined tracer method used for overlapping galaxy samples (LRG and ELG in 0.8 < z < 1.1

Validating the Galaxy and Quasar Catalog-Level Blinding Scheme for the DESI 2024 analysis: U. Andrade et al (2024): arXiv:2404.07282

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Cosmological Constraints from DESI BAO

Standard Cosmological Model

U.S. Department of Energy Office of Science

GR and FLRW metric

ACDM model

Uendert Andrade (UMichigan)

CDM

Cosmological Constant

Standard Cosmological Model

U.S. Department of Energy Office of Science

GR and FLRW metric

The gravity of a reasonal adjust builds the filled of apone and

Light defease the account

Uendert Andrade (UMichigan)

CDM

Cosmological Constant

3.9σ tantalizing suggestion of deviations from the standard cosmological model

DESI: Breaking the Habit...

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Most anomalous @ z = 0.51;offset at $\sim 2\sigma$ from ΛCDM .

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

INSTRUMENT

Uendert Andrade (UMichigan)

BAO dataset from DESI + SDSS

Combing DESI and SDSS to get the most precise BAO measurements ever made.

However, bear in mind:

- This is not the same as combining at the likelihood level
- This combined sample should be selected by choosing the results from the couting.

BAO dataset from DESI + SDSS

Combing DESI and SDSS to get the most precise BAO measurements ever made.

survey covering the larger effective volume at a given redshift — to avoid double-

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

However, bear in mind:

- This is not the same as combining at the likelihood level
- This combined sample should be selected by choosing the results from the couting.

The composite BAO dataset:

- above.

BAO dataset from DESI + SDSS

Combing DESI and SDSS to get the most precise BAO measurements ever made.

survey covering the larger effective volume at a given redshift — to avoid double-

• at z < 0.6 where SDSS currently has a larger $V_{\rm eff}$, we use the SDSS results at $z_{\rm eff} =$ 0.15, 0.38 and 0.51 in place of the DESI BGS and lowest-redshift LRG points;

• at z > 0.6 where DESI has V_{eff} larger than that of SDSS, we use the DESI results from LRGs over 0.6 < z < 0.8, the LRG+ELG combination over 0.8 < z < 1.1, and ELGs and QSOs at higher redshifts; and

• for the Ly α BAO we use the combined DESI+SDSS result from Eqs. (3.3) and (3.4)

However, bear in mind:

- This is not the same as combining at the likelihood level
- This combined sample should be selected by choosing the results from the couting.

The composite BAO dataset: (DESI + SDSS)

- above.

BAO dataset from DESI + SDSS

Combing DESI and SDSS to get the most precise BAO measurements ever made.

survey covering the larger effective volume at a given redshift — to avoid double-

• at z < 0.6 where SDSS currently has a larger $V_{\rm eff}$, we use the SDSS results at $z_{\rm eff} =$ 0.15, 0.38 and 0.51 in place of the DESI BGS and lowest-redshift LRG points;

• at z > 0.6 where DESI has V_{eff} larger than that of SDSS, we use the DESI results from LRGs over 0.6 < z < 0.8, the LRG+ELG combination over 0.8 < z < 1.1, and ELGs and QSOs at higher redshifts; and

• for the Ly α BAO we use the combined DESI+SDSS result from Eqs. (3.3) and (3.4)

U.S. Department of Energy Office of Science

INSTRUMENT

Relation between BAO parameters, e.g., $(\alpha_{\parallel}, \alpha_{\perp})$ and distances (D_M, D_H, D_V)

angular diameter distance $D_M(z)$

stance $D_H(z)$

-averaged distance $D_V(z)$

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Uen

Distance Measurements

U.S. Department of Energy Office of Science

INSTRUMENT

Relation between BAO parameters, e.g., $(\alpha_{\parallel}, \alpha_{\perp})$ and distances (D_M, D_H, D_V)

$$\frac{D_M(z)}{r_d} \equiv \frac{D_A(z) (1+z)}{r_d} = \left(\alpha_{\perp} \frac{D_M^{\text{fid}}(z)}{r_d^{\text{fid}}}\right) \qquad \text{comoving ang}$$

$$\frac{D_H(z)}{r_d} \equiv \frac{c}{H(z)r_d} = \left(\alpha_{\parallel} \frac{D_H^{\text{fid}}(z)}{r_d^{\text{fid}}}\right) \qquad \text{Hubble distant}$$

$$\frac{D_V(z)}{r_d} \equiv \frac{\left[zD_M^2(z)D_H(z)\right]^{1/3}}{r_d} = \left(\alpha_{\text{iso}} \frac{D_V^{\text{fid}}(z)}{r_d^{\text{fid}}}\right) \qquad \text{spherically-ave}$$

gular diameter distance $D_M(z)$

ice $D_H(z)$

eraged distance $D_V(z)$

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Uer

Distance Measurements

U.S. Department of Energy Office of Science

INSTRUMENT

Relation between BAO parameters, e.g., $(\alpha_{\parallel}, \alpha_{\perp})$ and distances (D_M, D_H, D_V)

$$\frac{D_{M}(z)}{r_{d}} \equiv \frac{D_{A}(z) (1+z)}{r_{d}} = \left(\alpha_{\parallel} \frac{D_{M}^{\text{ind}}(z)}{r_{d}^{\text{fid}}}\right) \qquad \text{comoving angular diameter distance } D_{M}(z)$$

$$\frac{D_{H}(z)}{r_{d}} \equiv \frac{c}{H(z)r_{d}} = \left(\alpha_{\parallel} \frac{D_{H}^{\text{fid}}(z)}{r_{d}^{\text{fid}}}\right) \qquad \text{Hubble distance } D_{H}(z)$$

$$\frac{D_{V}(z)}{r_{d}} \equiv \frac{[zD_{M}^{2}(z)D_{H}(z)]}{r_{d}}^{1/3} = \left(\alpha_{\text{iso}} \frac{D_{V}^{\text{fid}}(z)}{r_{d}^{\text{fid}}}\right) \qquad \text{Spherically-averaged distance } D_{V}(z)$$

$$\frac{\text{Dest VI. Cosmological constraints - Aug 2024 XII ICNEP @ Crete, Greece, 2024}}{\frac{D_{V}(z)}{D_{V}(z)}}$$

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Internal consistency of DESI results

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Consistent with each other —

and complementary

Uendert Andrade (UMichigan)

Internal consistency of DESI results

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Uendert Andrade (UMichigan)

DESI Y1 BAO consistent with:

SDSS (eBOSS Collaboration, 2020)

Uendert Andrade (UMichigan)

DESI Y1 BAO consistent with:

- SDSS (eBOSS Collaboration, 2020)
- primary CMB: Planck Collaboration, 2018 and CMB lensing: Planck PR4 + ACT DR6 lensing ACT Collaboration, 2023, Carron, Mirmelstein, Lewis, 2022

Uendert Andrade (UMichigan)

DESI Y1 BAO consistent with:

- SDSS (eBOSS Collaboration, 2020)
- primary CMB: Planck Collaboration, 2018 and CMB lensing: Planck PR4 + ACT DR6 lensing ACT Collaboration, 2023, Carron, Mirmelstein, Lewis, 2022

Uendert Andrade (UMichigan)

DESI Y1 BAO consistent with:

- SDSS (<u>eBOSS Collaboration</u>, 2020)
- primary CMB: Planck Collaboration, 2018 and CMB lensing: Planck PR4 + ACT DR6 lensing ACT Collaboration, 2023, Carron, Mirmelstein, Lewis, 2022

Uendert Andrade (UMichigan)

• BAO constraints $r_{\rm d}(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) h$

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

- BAO constraints $r_{\rm d}(\Omega_{\rm m}h^2, \Omega_{\rm b}h^2) h$
- $\Omega_{\rm m}$ constraint by BAO at different z

Uendert Andrade (UMichigan)

- BAO constraints $r_d(\Omega_m h^2, \Omega_h h^2) h$
- $\Omega_{\rm m}$ constraint by BAO at different z
- $\Omega_h h^2$ can be constraied by BBN: <u>Schöneberg et al., 2024</u>

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

- BAO constraints $r_d(\Omega_m h^2, \Omega_h h^2) h$
- $\Omega_{\rm m}$ constraint by BAO at different z
- $\Omega_h h^2$ can be constraied by BBN: <u>Schöneberg et al., 2024</u>

 \implies constrains on h i.e. H_0

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

INSTRUMENT

$\theta_* \rightarrow \text{CMB}$ angular acoustic scale

U.S. Department of Energy Office of Science

INSTRUMENT

Consistency with SDSS

Uendert Andrade (UMichigan)

$\theta_* \rightarrow \text{CMB}$ angular acoustic scale

Hubble constant

U.S. Department of Energy Office of Science

INSTRUMENT

- Consistency with SDSS
- In agreement with CMB

Uendert Andrade (UMichigan)

$\theta_* \rightarrow \text{CMB}$ angular acoustic scale

Hubble constant

U.S. Department of Energy Office of Science

INSTRUMENT

- Consistency with SDSS
- In agreement with CMB
- In 3.7σ tension with SHOES

$\theta_* \rightarrow \text{CMB}$ angular acoustic scale

INSTRUMENT

DESI + CMB measurements favor a flat Universe

Uendert Andrade (UMichigan)

INSTRUMENT

DESI + CMB measurements favor a flat Universe

Uendert Andrade (UMichigan)

INSTRUMENT

DESI + CMB measurements favor a flat Universe

Uendert Andrade (UMichigan)

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99^{+0.15}_{-0.13}$ (15%) DESI

Uendert Andrade (UMichigan)

Dark Energy Equation of State

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99^{+0.15}_{-0.13}$ (15%) DESI

Uendert Andrade (UMichigan)

Dark Energy Equation of State

U.S. Department of Energy Office of Science

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99^{+0.15}_{-0.13}$ (15%) DESI

SNe:

PantheonPlus (Brout, Scolnic, Popovic et al. 2023)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

U.S. Department of Energy Office of Science

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99^{+0.15}_{-0.13}$ (15%) DESI

SNe:

- PantheonPlus (Brout, Scolnic, Popovic et al. 2023)
- Union3 (Runbin, Aldering, Betoule et al. 2023)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

U.S. Department of Energy Office of Science

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99^{+0.15}_{-0.13}$ (15%) DES

SNe:

- PantheonPlus (Brout, Scolnic, Popovic et al. 2023)
- Union3 (Runbin, Aldering, Betoule et al. 2023)
- **DES-SN5YR** (DES Collaboration et al. 2024)

Dark Energy Equation of State

U.S. Department of Energy Office of Science

INSTRUMENT

Constant EoS parameter *w*

 $\Omega_{\rm m} = 0.295 \pm 0.15$ (5.1%) $w = -0.99_{-0.13}^{+0.15}$ (15%) DES $\Omega_{\rm m} = 0.295 \pm 0.15$ (2.1%) w = -0.99(2.5%) **DESI+CMB+PantheonPlus**

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Varying EoS

 $w(a) = w_0 + (1 - a)w_a$ (CPL)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Varying EoS

 $w(a) = w_0 + (1 - a)w_a$ (CPL)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Varying EoS

 $w(a) = w_0 + (1 - a)w_a$ (CPL)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Varying EoS

 $w(a) = w_0 + (1 - a)w_a$ (CPL)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Varying EoS

 $w(a) = w_0 + (1 - a)w_a$ (CPL)

Uendert Andrade (UMichigan)

Dark Energy Equation of State

Dark Energy Equation of State

U.S. Department of Energy Office of Science

INSTRUMENT

Combining all DESI + CMB + SN $w_0 = -0.827 \pm 0.063, \qquad w_a = -0.75^{+0.29}_{-0.25}$ **DESI + CMB + PantheonPlus** $\implies 2.5\sigma$

Uendert Andrade (UMichigan)

INSTRUMENT

Combining all DESI + CMB + SN $w_0 = -0.827 \pm 0.063, \qquad w_a = -0.75^{+0.29}_{-0.25}$ **DESI + CMB + PantheonPlus** $\implies 2.5\sigma$ $w_0 = -0.64 \pm 0.11, \qquad w_a = -1.27^{+0.40}_{-0.34}$ **DESI + CMB + Union3** \implies 3.5 σ

Uendert Andrade (UMichigan)

Dark Energy Equation of State

INSTRUMENT

Combining all DESI + CMB + SN $w_0 = -0.827 \pm 0.063, \qquad w_a = -0.75^{+0.29}_{-0.25}$ **DESI + CMB + PantheonPlus** $\implies 2.5\sigma$ $w_0 = -0.64 \pm 0.11, \qquad w_a = -1.27^{+0.40}_{-0.34}$ **DESI + CMB + Union3** \implies 3.5 σ $w_a = -1.05^{+0.31}_{-0.27}$ $w_0 = -0.727 \pm 0.067,$ $DESI + CMB + DES-SN5YYR \implies 3.9\sigma$

Dark Energy Equation of State

INSTRUMENT

Combining all DESI + CMB + SN $w_0 = -0.827 \pm 0.063, \qquad w_a = -0.75^{+0.29}_{-0.25}$ **DESI + CMB + PantheonPlus** $\implies 2.5\sigma$ $w_0 = -0.64 \pm 0.11, \qquad w_a = -1.27^{+0.40}_{-0.34}$ **DESI + CMB + Union3** \implies 3.5 σ $w_a = -1.05^{+0.31}_{-0.27}$ $w_0 = -0.727 \pm 0.067,$ $DESI + CMB + DES-SN5YYR \implies 3.9\sigma$

Dark Energy Equation of State

Uendert Andrade (UMichigan)

leaves detectable imprints on cosmological observations.

Uendert Andrade (UMichigan)

A generic prediction of the hot Big Bang model is a relic neutrino background which

Neutrinos in cosmology

U.S. Department of Energy Office of Science

leaves detectable imprints on cosmological observations.

evolution and structure formation

Uendert Andrade (UMichigan)

A generic prediction of the hot Big Bang model is a relic neutrino background which

Both the acoustic oscillations in the primordial plasma as well as the background

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Neutrinos in cosmology

U.S. Department of Energy Office of Science

leaves detectable imprints on cosmological observations.

evolution and structure formation

Cosmological observations are sensitive to both the number of neutrino species and their total mass

Uendert Andrade (UMichigan)

A generic prediction of the hot Big Bang model is a relic neutrino background which

Both the acoustic oscillations in the primordial plasma as well as the background

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

INSTRUMENT

• So far assumes the sum of neutrino masses to be $\sum m_{\nu} = 0.06 \text{ eV}$, with a single massive eigenstate and two massless ones

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

- So far assumes the sum of neutrino masses to be $M_{\nu} = 0.06 \text{ eV}$, with a single massive eigenstate and two massless ones
- Single-parameter extension beyond this minimal model in which $\sum m_{\nu}$ is allowed to freely vary, in order to explore the constraining power on $\sum m_{\nu}$ of DESI data

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

- So far assumes the sum of neutrino masses to be $M_{\nu} = 0.06 \text{ eV}$, with a single massive eigenstate and two massless ones
- Single-parameter extension beyond this minimal model in which $\sum m_{\nu}$ is allowed to freely vary, in order to explore the constraining power on $\sum m_{\nu}$ of DESI data
- What terrestrial experiments tell us?
 - KATRIN gives an upper bound $\sum n$

• At least two of the three active neutrino masses are non-zero, but the ordering of these masses is not known: normal hierarchy (NH) and inverted hierarchy (IH). **Priors:**

$$n_{\nu} \lesssim 2.4 \, \mathrm{eV}$$

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

DARK ENERGY

INSTRUMENT

- So far assumes the sum of neutrino masses to be $M_{\nu} = 0.06 \text{ eV}$, with a single massive eigenstate and two massless ones
- Single-parameter extension beyond this minimal model in which $\sum m_{\nu}$ is allowed to freely vary, in order to explore the constraining power on $\sum m_{\nu}$ of DESI data
- What terrestrial experiments tell us?
 - KATRIN gives an **upper bound** \sum_{n} *n*

• At least two of the three active neutrino masses are non-zero, but the ordering of these masses is not known: normal hierarchy (NH) and inverted hierarchy (IH). **Priors:**

$$NH: \sum m_{\nu} \ge 0.059 \text{ eV}, \quad IH: \sum m_{\nu} \ge 0.10 \text{ eV}$$

$$n_{\nu} \lesssim 2.4 \, \mathrm{eV}$$

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, especially through H_0

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, especially through H_0

Low preferred value of H_0 yields

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, especially through H_0

Low preferred value of H_0 yields

Limit relaxed for extensions to ΛCDM

 $m_{\nu} < 0.195 \text{ eV for } w_0 w_a \text{CDM}$

Uendert Andrade (UMichigan)

With > 0.059 eV prior (NH)

$m_{\nu} < 0.113 \text{ eV}$ (95%, DESI + CMB)

Uendert Andrade (UMichigan)

Neutrino mass hierarchies

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

With > 0.059 eV prior (NH)

$$\sum m_{\nu} < 0.113 \text{ eV} (95\%, \text{DESI} + \text{CMI})$$

With > 0.10 eV prior (IH)

 $m_{\nu} < 0.145 \text{ eV}$ (95%, DESI + CMB)

Uendert Andrade (UMichigan)

Neutrino mass hierarchies

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

With > 0.059 eV prior (NH)

$$\sum m_{\nu} < 0.113 \text{ eV}$$
 (95%, DESI + CMI)

With > 0.10 eV prior (IH)

 $m_{\nu} < 0.145 \text{ eV}$ (95%, DESI + CMB)

Uendert Andrade (UMichigan)

Neutrino mass hierarchies

Current constraints do not strongly favor normal over inverted hierarchy ($\simeq 2\sigma$)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Hubble tension?

U.S. Department of Energy Office of Science

INSTRUMENT

- Extension models: modify the background geometry or late-time expansion history
- The calibration of the sound horizon using BBN relies on assumptions about the physics at the time of BBN: effective number of relativistic degrees of freedom, N_{eff}

Hubble tension?

U.S. Department of Energy Office of Science

- Extension models: modify the background geometry or late-time expansion history
- The calibration of the sound horizon using BBN relies on assumptions about the physics at the time of BBN: effective number of relativistic degrees of freedom, N_{eff}

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

Summary

U.S. Department of Energy Office of Science

- ^o DESI + BBN (+ θ_*) constrains H_0 to ~ 1 %; 3.7 σ tension w/ SH0ES
- DESI, in combination with CMB data, favors zero spatial curvature 0
- DESI is consistent with w = -1 when w assumed constant 0
- When *w* allowed to vary with time: 0
 - DESI combined with CMB: 2.6σ tension 0
 - Adding SN leads to 2.5, 3.5, 3.9σ tension with $(w_0, w_a) = (-1, 0)$. (Discrepancy depends on the SN sample used)

with
$$(w_0, w_a) = (-1, 0)$$

• Limit on M_{ν} improves to < 0.072 eV(95%, ΛCDM); < 0.195 eV(95%, w_0w_aCDM)

Summary

U.S. Department of Energy Office of Science

- ^o DESI + BBN (+ θ_*) constrains H_0 to ~ 1 %; 3.7 σ tension w/ SH0ES
- DESI, in combination with CMB data, favors zero spatial curvature 0
- DESI is consistent with w = -1 when w assumed constant Ο
- When *w* allowed to vary with time: 0
 - DESI combined with CMB: 2.6σ tension 0
 - Adding SN leads to 2.5, 3.5, 3.9σ tension with $(w_0, w_a) = (-1, 0)$. (Discrepancy depends on the SN sample used)

A LOT of work from a lot of people!!!

with
$$(w_0, w_a) = (-1, 0)$$

• Limit on $\sum m_{\nu}$ improves to < 0.072 eV(95%, ΛCDM); < 0.195 eV(95%, w_0w_aCDM)

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

I hanks to our sponsors and 72 Participating Institutions!

Uendert Andrade (UMichigan)

DESI cosmology from Full-Shape

DESI cosmology from Full-Shape

INSTRUMENT

Uendert Andrade (UMichigan)

DESI cosmology from Full-Shape

Hubble tension

Combination with an external prior:

- CMB measurement of the sound horizon
- CMB measurement of the acoustic angular scale
- BBN

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

SPECTROSCOPIC

INSTRUMENT

- The data! already the biggest ever BAO dataset (both in and volume)
- Blind analysis to mitigate observer/confirmation biases (catalogue-level blinding)
- Theory developments in BAO fitting procedure
- New and improved reconstruction methods
- Unified BAO pipeline applied to all tracers/redshifts consistently
- Wide-ranging tests of systematic errors, done before unblinding
- New combined tracer method used for overlapping galaxy samples (LRG and ELG in 0.8 < z < 1.1

Uendert Andrade (UMichigan)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

INSTRUMENT

Uendert Andrade (UMichigan)

Blind analysis to mitigate observer/confirmation biases (catalogue-level blinding)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

U.S. Department of Energy Office of Science

Blinding happens in three steps:

- Blinding for BAO; 1.
- Blinding for RSD; 2.
- Blinding for primordial non-Gaussianity $f_{\rm NI}$. 3.

Uendert Andrade (UMichigan)

Blind analysis to mitigate observer/confirmation biases (catalogue-level blinding)

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

INSTRUMENT

First step: AP-like shift

 $z_i(\Omega_{\text{true}}) \xrightarrow{\Omega_{\text{blind}}} D_M(z_i, \Omega_{\text{blind}}) = D_M(z'_i, \Omega_{\text{fid}}) \xrightarrow{\Omega_{\text{fid}}} z'_i(\Omega_{\text{blind}})$

Uendert Andrade (UMichigan)

How is the DESI BAO analysis different?

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

INSTRUMENT

Second step: RSD shift

Uendert Andrade (UMichigan)

How is the DESI BAO analysis different?

The so-called displacement field: $\Psi = \nabla \phi$

$$\nabla \cdot \Psi = -\frac{\delta_g}{b_1}, \qquad \vec{r} = \vec{x} + f(\Psi \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$$

 $\mathbf{r}' = \mathbf{r} - f^{\text{fid}}(\boldsymbol{\Psi} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} + f^{\text{blind}}(\boldsymbol{\Psi} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}$

INSTRUMENT

Second step: RSD shift

Uendert Andrade (UMichigan)

How is the DESI BAO analysis different?

The so-called displacement field: $\Psi = \nabla \phi$

$$\nabla \cdot \Psi = -\frac{\delta_g}{b_1}, \qquad \vec{r} = \vec{x} + f(\Psi \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$$

$$\mathbf{r}' = \mathbf{r} - f^{\text{fid}} (\boldsymbol{\Psi} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} + f^{\text{blind}} (\boldsymbol{\Psi} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$$

U.S. Department of Energy Office of Science

INSTRUMENT

• Third step: weights-based blinding $f_{\rm NL}$

Alters the measured power spectrum at large scales by including in the catalog an additional set of weights, multiplied by the traditional ones.

Uendert Andrade (UMichigan)

U.S. Department of Energy Office of Science

SPECTROSCOPIC

INSTRUMENT

DESI 2024 analysis: U. Andrade et al (2024): arXiv:2404.07282

Uendert Andrade (UMichigan)

- Additional requirement: shifts in the blinded cosmology to specific regions within the (w_0, w_a) parameter space
- shifts in f do not exceed 10% of the fiducial value, $f_{\rm fid} = 0.8$
- 3 % for $\alpha_{\perp}, \alpha_{\parallel}$ from unity

DESI VI. Cosmological constraints - Aug 2024 XII ICNFP @ Crete, Greece, 2024

DESIY1 Results

U.S. Department of Energy Office of Science

INSTRUMENT

First batch of DESI DR1 cosmological analyses are out: https://data.desi.lbl.gov/doc/papers/

- DESI 2024 I: First year data release
- DESI 2024 II: DR1 catalogs
- DESI 2024 III: BAO from Galaxies and Quasars at z < 2
- DESI 2024 IV: BAO from Lyman- α Forest at z > 2
- DESI 2024 V: Galaxies and Quasars at z < 2
- DESI 2024 VI: Cosmological constraints from BAO measurements
- DESI 2024 VII: Cosmological constraint from RSD measurements

Uendert Andrade (UMichigan)

