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Various phenomena occur 
during the system evolution.
We use different assumptions 
and models to describe stages 
of heavy-ion collisions.
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It is hard to describe the low-𝑝𝑇 
pion enhancement!
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Here we assume the following:
• A state overpopulated by soft pions is formed at 𝜏 < 𝜏𝜋

𝐹𝑂

• For 𝜏𝜋
0 < 𝜏 < 𝜏𝜋

𝐹𝑂 the collisions conserve the particle number, but evolve the distribution function to 
a thermal equilibrium distribution (dominance of elastic collisions over inelastic ones)
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Zubarev approach: The non-equilibrium state of the system is characterized by relevant observables 
𝐵𝑛  in addition to the standard set of conserved ones. We look for the distribution which maximizes 

the information entropy Sinf = −Tr 𝜌𝑟𝑒𝑙 𝑡 ln 𝜌𝑟𝑒𝑙 𝑡 :

𝜌𝑟𝑒𝑙 𝑡 =
1

𝑍𝑟𝑒𝑙 𝑡
𝑒− σ𝑛 𝐹𝑛 𝑡 𝐵𝑛 , 𝑍𝑟𝑒𝑙 𝑡 = Tr 𝑒− σ𝑛 𝐹𝑛 𝑡 𝐵𝑛 ,

where Lagrange multipliers 𝐹𝑛 𝑡  are determined by the self-consistency conditions

𝐵𝑛
𝑡 = 𝐵𝑛 𝑟𝑒𝑙

𝑡 = Tr 𝜌𝑟𝑒𝑙 𝑡 𝐵𝑛
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observable. Then, the new self-consistency condition is:
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Here we assume the following:
• A state overpopulated by soft pions is formed at 𝜏 < 𝜏𝜋

𝐹𝑂

• For 𝜏𝜋
0 < 𝜏 < 𝜏𝜋

𝐹𝑂 the collisions conserve the particle number, but evolve the distribution function to 
a thermal equilibrium distribution (dominance of elastic collisions over inelastic ones)

𝑁𝜋 𝑟𝑒𝑙
𝑡 = 𝑁𝜋

𝑡

The non-equilibrium process of pion production within the Zubarev approach of the non-equilibrium 
statistical operator leads to the appearance of a non-equilibrium pion chemical potential
[Particles 2020, 3, 380–393]

𝑓𝜋 = exp
𝐸

𝑇
− 1

−1

 →  𝑓𝜋 = exp
𝐸 − 𝜇𝜋

𝑇
− 1

−1

Under these assumptions the pion number is quasi-conserved and can be chosen as a relevant 
observable. Then, the new self-consistency condition is:
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Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant 
freeze-out proper time

Σ𝜇 = 𝜏 cosh 𝜂 , 𝑟 c𝑜𝑠 𝜑 , 𝑟 sin 𝜑 , 𝜏 sinh 𝜂 , where 𝜏 = 𝑡2 − 𝑧2 = 𝑐𝑜𝑛𝑠𝑡.  and 𝜂 =
1

2
ln

𝑡 + 𝑧

𝑡 − 𝑧

𝜂

𝑟φ



Blast-Wave Model

Oleksandr Vitiuk Particle Spectra Phenomenology 6

Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant 
freeze-out proper time

Σ𝜇 = 𝜏 cosh 𝜂 , 𝑟 c𝑜𝑠 𝜑 , 𝑟 sin 𝜑 , 𝜏 sinh 𝜂 , where 𝜏 = 𝑡2 − 𝑧2 = 𝑐𝑜𝑛𝑠𝑡.  and 𝜂 =
1

2
ln

𝑡 + 𝑧

𝑡 − 𝑧

𝑢𝜇 = cosh 𝜌 cosh 𝜂 , sinh 𝜌 c𝑜𝑠 𝜑 , sinh 𝜌 sin 𝜑 , cosh 𝜌 sinh 𝜂 , where 𝜌 = atanh 𝑣 𝑟/𝑅 𝑛

with the following velocity profile

𝜂

𝑟φ
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𝑑6𝑁𝑖

𝑑𝑝𝑇𝑑𝑦𝑑𝜓𝑑𝑟𝑑𝜂𝑑𝜑
∝ 𝜏𝑟𝑝𝑇𝑚𝑇 cosh(𝑦 − 𝜂) exp

𝑚𝑇 cosh 𝜌 cosh(𝑦 − 𝜂) − 𝑝𝑇 sinh 𝜌 cos 𝜑 − 𝜓 − 𝜇𝑖

𝑇
± 1

−1

Here we consider chemical freeze-out on the cylindrical boost-invariant hypersurface at constant 
freeze-out proper time

Σ𝜇 = 𝜏 cosh 𝜂 , 𝑟 c𝑜𝑠 𝜑 , 𝑟 sin 𝜑 , 𝜏 sinh 𝜂 , where 𝜏 = 𝑡2 − 𝑧2 = 𝑐𝑜𝑛𝑠𝑡.  and 𝜂 =
1

2
ln

𝑡 + 𝑧

𝑡 − 𝑧

Then with the help of the Cooper-Frye formula 𝐸
𝑑3𝑁

𝑑3 Ԧ𝑝
= Σ𝐹𝑂 

𝑝𝜇𝑑Σ𝜇 𝑓(𝑥𝜇 , 𝑝𝜇𝑢𝜇) one finds

𝑢𝜇 = cosh 𝜌 cosh 𝜂 , sinh 𝜌 c𝑜𝑠 𝜑 , sinh 𝜌 sin 𝜑 , cosh 𝜌 sinh 𝜂 , where 𝜌 = atanh 𝑣 𝑟/𝑅 𝑛

𝑝𝑇 = 𝑝𝑥
2 + 𝑝𝑦

2 , 𝑚𝑇 = 𝑚𝑖
2 + 𝑝𝑇

2 , 𝑦 =
1

2
ln

𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧

with the following velocity profile

𝜂

𝑟φ
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𝑝𝜇𝑑Σ𝜇 𝑓(𝑥𝜇 , 𝑝𝜇𝑢𝜇) one finds

𝜏, 𝑅, 𝑇, 𝜇𝑖 , 𝑣 and 𝑛 are free model parameters
In some cases, the overall normalization is defined 
with the combination 𝜏𝑅2  
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Afterburner instead of 
solving generalized kinetics!

Thermal 
particle 
generator

✓Using two additional free 
parameters 𝜇𝜋 and 𝜇𝐾 one 
can achieve much better 
agreement between model 
and experimental data 

But feed-down and 
collisions are not in the 
model
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𝑓 ∝ 𝜏𝑟𝑝𝑇𝑚𝑇 cosh(𝑦 − 𝜂) exp
𝑚𝑇 cosh 𝜌 cosh(𝑦 − 𝜂) − 𝑝𝑇 sinh 𝜌 cos 𝜑 − 𝜓 − 𝜇𝑖

𝑇
± 1

−1

𝑓 → ሚ𝑓 =
1

𝑁

𝑓

𝑚 − 𝑚0
2 + Γ2/4

Distribution function:

Breit-Wigner mass attenuation for resonances:

Multiplicity in a single event is a Poisson random variable:

𝑃 𝑁𝑖 = 𝑁 =
< 𝑁𝑖 >𝑁

𝑁!
𝑒−<𝑁𝑖>

1. Set model parameters, evaluate < 𝑁𝑖 >
2. For every event generate yield of particles of 𝑖th type 𝑁𝑖

3. Generate 𝑁𝑖 particles of 𝑖th type from 𝑓
4. Feed all generated particles into SMASH as an afterburner
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

Bayes theorem:
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

P Ԧ𝑥| Ԧ𝑦𝑜𝑏𝑠 =
ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 𝑃( Ԧ𝑥)

𝑃( Ԧ𝑦𝑜𝑏𝑠)
∝ ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 × 𝑃( Ԧ𝑥)

Bayes theorem:

Suppose we have a model which for an input parameter vector Ԧ𝑥 = (𝑥1, … , 𝑥𝑛) gives an output 
Ԧ𝑦 = Ԧ𝑦 Ԧ𝑥 = (𝑦1, … , 𝑦𝑚). We want to find the “optimal” value of Ԧ𝑥 to describe the experimental 
data Ԧ𝑦𝑜𝑏𝑠
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data Ԧ𝑦𝑜𝑏𝑠

Prior
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

P Ԧ𝑥| Ԧ𝑦𝑜𝑏𝑠 =
ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 𝑃( Ԧ𝑥)

𝑃( Ԧ𝑦𝑜𝑏𝑠)
∝ ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 × 𝑃( Ԧ𝑥)

ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 =
1

|2𝜋Σ|
exp −

1

2
Ԧ𝑦𝑜𝑏𝑠 − Ԧ𝑦 Ԧ𝑥

𝑇
Σ−1 Ԧ𝑦𝑜𝑏𝑠 − Ԧ𝑦 Ԧ𝑥

Bayes theorem:

Suppose we have a model which for an input parameter vector Ԧ𝑥 = (𝑥1, … , 𝑥𝑛) gives an output 
Ԧ𝑦 = Ԧ𝑦 Ԧ𝑥 = (𝑦1, … , 𝑦𝑚). We want to find the “optimal” value of Ԧ𝑥 to describe the experimental 
data Ԧ𝑦𝑜𝑏𝑠

Likelihood Prior

If we know mean values and variance, then the likelihood takes the form of multivariate 
Gaussian
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Define the model 
Choose prior and 

observables
Produce train & 

validation data sets

Reduce dimensionality 
with PCA 

Train and validate
GP emulators

Sample posterior 
distribution with MCMC

Find MAP & Validate the result
(Closure test & MAP validation)

Validation step

Normalize
data
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• Blast-Wave thermal particle generator model 
with SMASH afterburner

• Uniform prior:
𝜏 ∈ 2; 17  𝑓𝑚/𝑐
𝑅 ∈ 6; 17  𝑓𝑚
𝑇 ∈ 145; 165  𝑀𝑒𝑉
𝑣 ∈ 0.65; 0.85
𝑛 ∈ 0.4; 0.85
𝜇𝜋 ∈ 0; 100  𝑀𝑒𝑉 or 𝜇𝜋 = 0

• Observables: 𝑝, ҧ𝑝, 𝜋+, 𝜋−, 𝐾+, 𝐾− spectra in 0-5% 
Pb-Pb@2.76 TeV collisions for 𝑝𝑇 ≤ 2 GeV/c

• 160 training and 40 validation data sets
• 5 PCs

• Kernel: K(𝑥𝑖 , 𝑥𝑗) = 𝜃𝐴
2 exp −

𝑥𝑖−𝑥𝑗
2

2𝜃𝐿
2 + 𝜃𝑛𝛿𝑖,𝑗

• 100000 MCMC samples
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The model gives small but non-
zero pion chemical potential

𝝉, fm/c 𝑹, fm 𝑻, MeV 𝒗 𝒏 𝝁𝝅, MeV

8.08 11.50 155.98 0.783 0.697 9.52

8.88 11.54 154.02 0.786 0.699 −
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The model gives small but non-
zero pion chemical potential

𝜇𝜋 ≠ 0 𝜇𝜋 = 0

𝝉, fm/c 𝑹, fm 𝑻, MeV 𝒗 𝒏 𝝁𝝅, MeV

8.08 11.50 155.98 0.783 0.697 9.52

8.88 11.54 154.02 0.786 0.699 −
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃 𝐵|𝑀 = න 𝑃 𝐵|𝐴, 𝑀 𝑃 𝐴 𝑀 𝑑𝐴

probability that 𝐵 
is produced under 
the assumption of 
the model 𝑀



Bayes Factor

Oleksandr Vitiuk Particle Spectra Phenomenology 13

𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃 𝐵|𝑀 = න 𝑃 𝐵|𝐴, 𝑀 𝑃 𝐴 𝑀 𝑑𝐴

𝐵2
1 =

𝑃 𝐵|𝑀1

𝑃 𝐵|𝑀2
=

 𝑃 𝐵|𝐴,𝑀1 𝑃(𝐴|𝑀1) 𝑑𝐴

 𝑃 𝐵|𝐴,𝑀2 𝑃(𝐴|𝑀2) 𝑑𝐴

𝑩𝟏𝟐 Evidence for 𝑴𝟏

1 Zero

1 − 3 Weak

3 − 10 Moderate

10 − 30 Strong

30 − 100 Very strong

> 100 Extreme

probability that 𝐵 
is produced under 
the assumption of 
the model 𝑀
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃 𝐵|𝑀 = න 𝑃 𝐵|𝐴, 𝑀 𝑃 𝐴 𝑀 𝑑𝐴

𝐵2
1 =

𝑃 𝐵|𝑀1

𝑃 𝐵|𝑀2
=

 𝑃 𝐵|𝐴,𝑀1 𝑃(𝐴|𝑀1) 𝑑𝐴

 𝑃 𝐵|𝐴,𝑀2 𝑃(𝐴|𝑀2) 𝑑𝐴

𝑩𝟏𝟐 Evidence for 𝑴𝟏

1 Zero

1 − 3 Weak

3 − 10 Moderate

10 − 30 Strong

30 − 100 Very strong

> 100 Extreme

𝐵𝜇𝜋=0
𝜇𝜋≠0

= 0.434

probability that 𝐵 
is produced under 
the assumption of 
the model 𝑀
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𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

𝑃 𝐵|𝑀 = න 𝑃 𝐵|𝐴, 𝑀 𝑃 𝐴 𝑀 𝑑𝐴

𝐵2
1 =

𝑃 𝐵|𝑀1

𝑃 𝐵|𝑀2
=

 𝑃 𝐵|𝐴,𝑀1 𝑃(𝐴|𝑀1) 𝑑𝐴

 𝑃 𝐵|𝐴,𝑀2 𝑃(𝐴|𝑀2) 𝑑𝐴

𝑩𝟏𝟐 Evidence for 𝑴𝟏

1 Zero

1 − 3 Weak

3 − 10 Moderate

10 − 30 Strong

30 − 100 Very strong

> 100 Extreme

𝐵𝜇𝜋=0
𝜇𝜋≠0

= 0.434

No evidence for the 
non-equilibrium 

hadronization

probability that 𝐵 
is produced under 
the assumption of 
the model 𝑀
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• The non-equilibrium process of pion production within the Zubarev approach of 
the non-equilibrium statistical operator leads to the appearance of a non-
equilibrium pion chemical potential

• Naïve model gives the value of effective chemical potential close to the pion mass 
and can describe data well – improved kinetic freeze-out description

• Two models of hadronization give very similar parameters and 
quality of the data description

• Nonequilibrium hadronization model gives small, but non-zero value of pion 
chemical potential

• No evidence for the non-equilibrium hadronization
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Result is consistent with the 
ALICE [PRC 88, 044910 (2013)]

𝑇 = 95 ± 4 ± 10 MeV
𝛽𝑇 = 0.651 ± 0.004 ± 0.02

𝑛 = 0.712 ± 0.019 ± 0.086
𝜒2

𝑛𝑑𝑜𝑓
= 0.15

But in this model, we have less 
“slow” 𝜋± than in the data:
• Bose enhancement?
• Feed-down?

𝑑𝑁

𝑝𝑇𝑑𝑝𝑇
∝ න

0

𝑅

𝑟𝑑𝑟 𝑚𝑇𝐼0

𝑝𝑇 sinh 𝜌

𝑇
𝐾1

𝑚𝑇 cosh 𝜌

𝑇

Standard fit – Blast-Wave model
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Example: Metropolis-Hastings algorithm
1. Draw a proposal for Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1 from the proposal distribution 𝑄

2. Compute acceptance probability 𝐴( Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1) = min 1;
ℒ Ԧ𝑥′𝑖+1;𝑦𝑜𝑏𝑠 ×𝑃( Ԧ𝑥′𝑖+1)

ℒ Ԧ𝑥𝑖;𝑦𝑜𝑏𝑠 ×𝑃( Ԧ𝑥𝑖)

𝑄( Ԧ𝑥′𝑖+1→ Ԧ𝑥𝑖)

𝑄( Ԧ𝑥𝑖→ Ԧ𝑥′𝑖+1)

3. Pick a random number 𝑟 from uniform range [0, 1]
4. If 𝐴( Ԧ𝑥𝑖 → Ԧ𝑥′𝑖+1) > 𝑟, accept the proposed move and set Ԧ𝑥𝑖+1 = Ԧ𝑥′𝑖+1. Otherwise set Ԧ𝑥𝑖+1 = Ԧ𝑥𝑖  
5. Set 𝑖 = 𝑖 + 1 and repeat the process

Problem: We don’t have an analytic form of Ԧ𝑦 Ԧ𝑥 ⇒ we don’t have an analytic expression for ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠

Solution: Markov Chain Monte-Carlo Sampling
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Problem: MCMC requires many model evaluations to reconstruct the likelihood function.

Gaussian process - a stochastic process, in which every finite set 𝑌𝑖 𝑖=1
𝑚  is a multivariate Gaussian 

random variable 𝑁 Ԧ𝜇, Σ . Approach based on the important property of multivariate normal 
distribution:
Let A ∼ 𝑁( Ԧ𝜇, Σ). If A′ = TA + c, then A′ ∼ 𝑁(𝑇 Ԧ𝜇 + 𝑐, 𝑇ΣTT).

We need to know the covariance matrix for the given data set. It is parametrized in terms of 

hyperparameters Ԧ𝜃  

𝑓
𝑌

∼ 𝑁
𝜇𝑓

𝜇𝑌
,

Σ𝑋∗,𝑋∗ Σ𝑋∗,𝑋

Σ𝑋,𝑋∗ Σ𝑋,𝑋
, 𝑇 =

𝐼 −Σ𝑋∗,𝑋Σ𝑋,𝑋
−1

0 𝐼
⇒

𝑓′

𝑌′

∼ 𝑁
0
0

,
Σ𝑋∗,𝑋∗ − Σ𝑋∗,𝑋Σ𝑋,𝑋

−1 Σ𝑋,𝑋∗ 0

0 Σ𝑋,𝑋

𝑓′ = 𝑓 − Σ𝑋∗,𝑋Σ𝑋,𝑋
−1 𝑌 ⇒  𝑓 ቚ

𝑌=𝑦
∼ 𝑁(Σ𝑋∗,𝑋Σ𝑋,𝑋

−1 𝑦, Σ𝑋∗,𝑋∗ − Σ𝑋∗,𝑋Σ𝑋,𝑋
−1 Σ𝑋,𝑋∗)

Σij = K 𝑥𝑖 , 𝑥𝑗; Ԧ𝜃 ⇒
𝑑 ln 𝑃 𝑌 Ԧ𝜃

𝑑 Ԧ𝜃
= 0

Solution: Emulate model using Gaussian processes
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1. Let us define the matrix 𝑀𝑖𝑗 =
𝑦𝑖 𝑥𝑗 − 𝑦𝑖

𝜎𝑖
→ 𝐶 = 𝑀𝑇𝑀 − 𝑚 × 𝑚 covariance matrix

2. Sort eigenvalues 𝜆𝑖 and eigenvectors Ԧ𝑣𝑖 of matrix 𝐶 in descending order of 𝜆𝑖

3. Keep 𝑝 first components which together explain the desired fraction of total variance

4.  𝑉𝑝 = Ԧ𝑣1 … Ԧ𝑣𝑝 → Ԧ𝑧 = Ԧ𝑦 𝑉𝑝, Ԧ𝑦 = Ԧ𝑧 𝑉𝑝
𝑇 , Σ𝑧 = 𝑉𝑝

𝑇Σ𝑦𝑉𝑝 

Problem: GP can take a multidimensional input, but the output is always a scalar.
𝑀 observables = 𝑀 GP emulators. Typical order is 𝑂 100  observables.

Solution: Dimension reduction via Principal Component Analysis



Likelihood with PCA and GP
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Define your 
model

Choose prior and 
observables

Produce train & 
validation data sets

Reduce dimensionality 
with PCA 

Train and validate
GP emulators

Sample posterior 
distribution with MCMC

Find MAP & Validate the result
(Closure test & MAP validation)

ℒ Ԧ𝑥; Ԧ𝑦𝑜𝑏𝑠 =
1

|2𝜋(Σexp + Σ𝐺𝑃)|
exp −

1

2
Ԧ𝑧𝑜𝑏𝑠 − Ԧ𝑧𝐺𝑃 Ԧ𝑥

𝑇
(Σexp + Σ𝐺𝑃)−1 Ԧ𝑧𝑜𝑏𝑠 − Ԧ𝑧𝐺𝑃 Ԧ𝑥

Likelihood with GP emulators and PCA:

Where:

Ԧ𝑧𝑜𝑏𝑠 = Ԧ𝑦𝑜𝑏𝑠 𝑉𝑝, Σexp = 𝑉𝑝
𝑇Σ𝑉𝑝
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The non-equilibrium state of the system is characterized by relevant observables 𝐵𝑛  in addition to the standard set of 
conserved ones. We look for the distribution which maximizes the information entropy Sinf = −Tr 𝜌𝑟𝑒𝑙 𝑡 ln 𝜌𝑟𝑒𝑙 𝑡 :

𝜌𝑟𝑒𝑙 𝑡 =
1

𝑍𝑟𝑒𝑙 𝑡
𝑒− σ𝑛 𝐹𝑛 𝑡 𝐵𝑛 , 𝑍𝑟𝑒𝑙 𝑡 = Tr 𝑒− σ𝑛 𝐹𝑛 𝑡 𝐵𝑛 ,

where Lagrange multipliers 𝐹𝑛 𝑡  are determined by the self-consistency conditions

𝐵𝑛
𝑡 = 𝐵𝑛 𝑟𝑒𝑙

𝑡 = Tr 𝜌𝑟𝑒𝑙 𝑡 𝐵𝑛

The nonequilibrium statistical operator is defined as

𝜌𝑁𝑆𝑂(𝑡) = lim
𝜀→+0

휀 න

−∞

𝑡

𝑑𝑡′ 𝑒𝜀(𝑡′−𝑡)𝑒𝑖𝐻(𝑡′−𝑡)/ℏ𝜌𝑟𝑒𝑙 𝑡 𝑒𝑖𝐻(𝑡−𝑡′)/ℏ

There is no unique way to choose the relevant observables. In principle, all choices for the set of relevant observables should 
give the same result, but in practice it is not the case.

According to the NSO method, the equations of evolution are given by

𝑑

𝑑𝑡
𝐵𝑛

𝑡 = lim
𝜀→+0

𝑖휀

ℏ
න

−∞

𝑡

𝑑𝑡′ 𝑒𝜀(𝑡′−𝑡)Tr 𝜌𝑟𝑒𝑙 𝑡 𝑒𝑖𝐻(𝑡′−𝑡)/ℏ 𝐻, 𝐵𝑛 𝑒𝑖𝐻(𝑡−𝑡′)/ℏ  
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