Single-pair measurement of the Bell parameter and relativistic independence

Many students, colleagues and:

Eliahu Cohen, Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University

XIII ICNFP, September 3 2024

correlations in space and time

& University אוניברסיטת בר־אילן

Weak measurements on devides will $V(x) = \frac{1-x^2}{2} - \Gamma_n K x - x_n$

(Nat. Commun. 12, 4770 (2021) (a)

Quantum time

(Quantum 6, 683 (2022))

(PRA 109, 032205 (2024))

(Comm. Phys. 5, 298 (2022))

(PRA 105, 042207 (2022))

Information-based **Quantum Gravity**

(Ann. Phys. 534, 2100348 (2022))

(PRD 104,021015 (2021)) (NJP 212, 083038 (2019))

See also: PNAS 115, 11730 (2018) - Quantum Emergent Phenomena PNAS 114, 6480 (2017) - Quantum Interference via nonlocal dynamics

 (b)

(Quantum Sci. Technol. 9, 015030 (2024))

Quantum Computation and Communication

(Nat. Commun. 11, 5119 (2020))

Quantum Imaging

Photonic Quantum Walks for Quantum Simulations

(Nat. Rev. Phys. 1, 437-449 (2019))

(PRL 127, 173603 (2021))

(PRA 105, 032413 (2022))

Quantum Measurements & Quantum Metrology

(PRL 117, 170402 (2016)) (Nat. Phys. 13, 1191 (2017)

Light: Sci. Appl. 10, 106 (2021)). (Nat. Phys. 16, 1206-1210 (2020))

(Quant. Sci. Technol. 9, 045027 (2024))

Quantum Inspired X-ray imaging with deep learning tools

 \div Idler \rightarrow Pump

(PRL 130, 253601 (2023)

(Comms. Eng. 3, 39 (2024))

Background

Uncertainty, entanglement, nonlocal correlations and their interrelations

Deriving quantum nonlocality from outside the quantum formalism+applications Relativistic Independence

Recent quantum optical experiments

Entanglement preserving measurement of the Bell parameter on each and every pair

Proof of the Relativistic Independence bounds

Uncertainty and nonlocality: An intimate relation

Uncertainty as an axiom

Uncertainty as an axiom	
\n $\overrightarrow{\sigma_{A\sigma_B}} \geq \left \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right $ \n	Nonlocality
\n $\sigma_{A\sigma_B} \geq \left \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right $ \n	\n $\left c_{00} + c_{10} + c_{01} - c_{11} \right > 2$ \n
\n $\sigma_A^2 \sigma_B^2 \geq \left \frac{1}{2} \langle \{\hat{A}, \hat{B}\} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle \right ^2 + \left \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right ^2$ \n	\n $\frac{dA}{dt} = \frac{i}{\hbar} [H, A]$ \n
\n $[a, a^{\dagger}] = 1 \quad \left[a^{(\mu)}(\mathbf{k}), a^{\dagger}^{(\mu')}(\mathbf{k}') \right] = \delta_{\mathbf{k}, \mathbf{k'}} \delta_{\mu, \mu'}$ \n	

Uncertainty as an axiom

Bell-CHSH Experiment – Intro

Paneru D., Cohen E., Fickler R., Boyd R.W., Karimi E., "Entanglement: Quantum or Classical?", Rep. Prog. Phys. 83, 064001 (2020).

A. Carmi, E. Cohen, "On the significance of the quantum mechanical covariance matrix", Entropy 20, 500 (2018).

We set to discover: Why are quantum correlations the way they are?

- Why $2\sqrt{2}$ and not 4?
- Models such as PR-boxes seem to have stronger correlations without violating relativistic causality, so what's the problem?

PR boxes and other post-quantum models violate either generalized uncertainty or a subtle form of relativistic causality (dubbed together RI)

• Along the way we found a strong relation between uncertainty and nonlocality as well as new bounds on spatial and temporal correlations

Quantum bounds beyond Tsirelson's

Uffink:

\n
$$
B^2 + \overline{B}^2 \leq 8
$$
\n
$$
B \equiv |c_{00} + c_{10} + c_{01} - c_{11}|
$$
\n
$$
\overline{B} \equiv |c_{00} + c_{10} - c_{01} + c_{11}|
$$
\n
$$
\overline{C} \subseteq \mathbb{Q} \subseteq \mathbb{N} \mathbb{S}
$$
\n**TIME:**

\n
$$
|c_{00}c_{10} - c_{01}c_{11}| \leq \sqrt{1 - c_{00}^2} \sqrt{1 - c_{10}^2} + \sqrt{1 - c_{01}^2} \sqrt{1 - c_{11}^2}
$$
\n**NPA:**

\n
$$
Q \subseteq ... \subseteq Q^3 \subseteq Q^2 \subseteq Q^{1+AB} \subseteq Q^1
$$

Quantum bounds beyond Tsirelson's

Relativistic Independence

Relativistic Independence

We proved that relativistic causality and generalized uncertainty alone yield all the aforementioned bounds, and even some new ones

Carmi A., Cohen E., *Sci. Adv.* 5*,* eaav8370 (2019)

Local correlations constrain nonlocal ones!

$$
\varrho_{ij} \stackrel{\text{def}}{=} \frac{\langle A_i B_j \rangle - \langle A_i \rangle \langle B_j \rangle}{\Delta_{A_i} \Delta_{B_j}},
$$

$$
\eta_A \stackrel{\text{def}}{=} \frac{\langle A_0 A_1 \rangle - \langle A_0 \rangle \langle A_1 \rangle}{\Delta_{A_0} \Delta_{A_1}}, \quad \eta_B \stackrel{\text{def}}{=} \frac{\langle B_0 B_1 \rangle - \langle B_0 \rangle \langle B_1 \rangle}{\Delta_{B_0} \Delta_{B_1}}.
$$

Local correlations determine the extent of nonlocal correlations!

New Approach to Quantum Nonlocality

New bounds on nonlocal correlations

- Quantum bounds on correlations are uncertainty principles
- We thus propose new, richer quantum bounds

$$
|\varrho_{00}\varrho_{10} - \varrho_{01}\varrho_{11}| \leq \sum_{j=0,1} \sqrt{(1-\varrho_{0j}^2)(1-\varrho_{1j}^2)\sqrt{-\operatorname{Im}(\eta_A)^2}}
$$

$$
|\varrho_{00}\varrho_{01} - \varrho_{10}\varrho_{11}| \leq \sum_{i=0,1} \sqrt{(1-\varrho_{i0}^2)(1-\varrho_{i1}^2)\sqrt{-\operatorname{Im}(\eta_B)^2}}
$$

$$
|\mathcal{B}| \leq \min\left\{\sqrt{2}\left(\sqrt{1+\operatorname{Re}(\eta_A)} + \sqrt{1-\operatorname{Re}(\eta_A)}\right), \ 2\sqrt{2}\sqrt{1-\operatorname{Im}(\eta_A)^2}\right\} \leq 2\sqrt{2}
$$

$$
|\mathcal{B}| \leq \min\left\{\sqrt{2}\left(\sqrt{1+\operatorname{Re}(\eta_B)} + \sqrt{1-\operatorname{Re}(\eta_B)}\right), \ 2\sqrt{2}\sqrt{1-\operatorname{Im}(\eta_B)^2}\right\} \leq 2\sqrt{2}
$$

$$
\varrho_{ij} \stackrel{\text{def}}{=} \frac{\langle A_i B_j \rangle - \langle A_i \rangle \langle B_j \rangle}{\Delta_{A_i} \Delta_{B_j}} \qquad \eta_A \stackrel{\text{def}}{=} \frac{\langle A_0 A_1 \rangle - \langle A_0 \rangle \langle A_1 \rangle}{\Delta_{A_0} \Delta_{A_1}}, \quad \eta_B \stackrel{\text{def}}{=} \frac{\langle B_0 B_1 \rangle - \langle B_0 \rangle \langle B_1 \rangle}{\Delta_{B_0} \Delta_{B_1}}
$$
\n
$$
\mathscr{B} \stackrel{\text{def}}{=} Q_{00} + Q_{10} + Q_{01} - Q_{11}
$$

Complementarity relations

Peled, B. Y., Te'eni, A., Georgiev, D., Cohen, E., & Carmi, A. (2020). Double Slit with an Einstein–Podolsky–Rosen Pair. *Applied Sciences*, *10*(3), 792.

Georgiev D., Bello L., Carmi A., Cohen E., "Quantum complementarity of one- and two-particle visibilities: direct evaluation method for continuous variables", Phys. Rev. A 103, 062211 (2021).

Further Generalization

$$
\forall i, j. \ A_i^{\dagger} \neq A_i, \ B_j^{\dagger} \neq B_j, \ [A_i, B_j] \neq 0
$$

$$
C(X_i, X_j) = \frac{\langle X_i X_j^{\dagger} \rangle - \langle X_i \rangle \langle X_j^{\dagger} \rangle}{\Delta_{X_i} \Delta_{X_j}} \qquad C \succeq 0
$$

$$
|\mathscr{B}| = \sqrt{\frac{1}{4}\left(\mathscr{B} + \mathscr{B}^\dagger\right)^2 - \frac{1}{4}\left(\mathscr{B} - \mathscr{B}^\dagger\right)^2} \leq \sqrt{2}\left[\sqrt{1 + \eta} + \sqrt{1 - \eta}\right] \leq 2\sqrt{2}
$$

How to measure? Weak measurements!

The quantum formalism is so restricting that even correlations between non-Hermitian, "signaling" operators cannot go beyond $2\sqrt{2}$

A. Carmi A., Y. Herasymenko, E. Cohen, K. Snizhko, NJP 21, 073032 (2019)

A fundamental quantitative relation

A. Carmi A., Y. Herasymenko, E. Cohen, K. Snizhko, NJP 21, 073032 (2019)

Temporal correlations: Leggett-Garg inequalities

Theorem 1. Elaborate Leggett–Garg-like inequality.

Given four consecutive measurements, we define the generalized LGI parameter as

 $L = |C(Q_1, Q_2) + C(Q_2, Q_3) + C(Q_3, Q_4) - C(Q_1, Q_4)|.$

The following holds

Ben Porath, D. Cohen, E., Leggett-Garg-like Inequalities from a Correlation Matrix Construction, Quantum Reports 5, 398-406 (2023).

Correlation Minor Norm and entanglement

$$
\mathcal{M}_{h,p}(\vec{\sigma}) = \left(\sum_{|I|=h} \prod_{k \in I} \sigma_k^p\right)^{\frac{1}{p}}
$$

• The CMNs can be used to detect entanglement: \exists some bound B such that

 $\mathcal{M}_{h,p} \leq B$ for all separable states

- For example, $\mathcal{M}_{1,1}(\vec{\sigma}) > 1$ implies that ρ is entangled
- But for other h and p values it yields a

better characterization

Peled B.Y., Te'eni A., Carmi A., Cohen E., "Correlation Minor Norm as a Detector and Quantifier of Entanglement", Sci. Rep. 11, 2849 (2021).

Correlation Minor Norm – Multipartite Case

$$
\begin{array}{c}\n\circ \\
\circ \\
\circ \\
\circ \\
\circ\n\end{array}
$$

Lenny, R., Te'eni, A., Peled, B. Y., Carmi, A., & Cohen, E. (2023). Multipartite entanglement detection via correlation minor norm. Quantum Information Processing, 22(7), 292.

$$
\mathcal{M}_{h,p=\infty} \le \alpha \left(\frac{\beta}{h-1}\right)^{n-1}
$$

$$
\mathcal{M}_{h,p=1} \le S_h \left(\alpha, \frac{\beta}{d^2-1}, \dots, \frac{\beta}{d^2-1}\right)
$$

 $h-1$

Wherein:

$$
\alpha = \prod_i \frac{1}{\sqrt{d_i}} , \; \beta = \prod_i \sqrt{\frac{d_i - 1}{d_i}}
$$

Networks and "population dynamics"

$$
\left(\mathcal{B}_{\mathcal{CV}_1}\right)^2 + \left(\mathcal{B}_{\mathcal{CV}_2}\right)^2 \le 8
$$

 $\sum_{k=1}^n |\mathcal{B}_{\mathcal{CV}_k}| \leq 2\sqrt{2n}.$ п

Te'eni, A., Peled, B. Y., Cohen, E., Carmi, A. Study of entanglement via a multi-agent dynamical quantum game, *Plos One* 18, e0280798 (2023).

Generalized Bekenstein Bound

Recent Experiments

Weak measurements

Reviews: J. Dressel *et al.*, *Rev. Mod. Phys.* **86**, 307 (2014), B. Tamir and E. Cohen, *Quanta* **2**, 7 (2013)

Laboratory realization of Sequential weak measurements

F. Piacentini et al., Phys. Rev. Lett. 117, 170402 (2016)

Sequential weak measurements - Results

F. Piacentini et al., Phys. Rev. Lett. 117, 170402 (2016)

Measurements of the Bell parameter for each pair

Measurements of the Bell parameter for each pair

Measurements of the Bell parameter for each pair

Testing relativistic independence

$$
\mathcal{RI} = \left| \frac{\mathcal{B}}{2\sqrt{2}} \right|^2 + \left(\text{Re} \left[\frac{r}{2\Delta_{A_2} \Delta_{A_1}} \right] \right)^2 \le 1
$$

$$
r^{Q} = \frac{\langle \hat{A}_{1} \hat{A}_{2} + \hat{A}_{2} \hat{A}_{1} \rangle}{2} - \langle \hat{A}_{1} \rangle \langle \hat{A}_{2} \rangle
$$

Thank you

Email: eliahu.cohen@biu.ac.il Website: https://www.eng.biu.ac.il/cohenel4/

Positions available!