

Recent Physics Results from CMS

John Strologas University of Ioannina (For the CMS Collaboration)

XIII International Conference on New Frontiers in Physics

Kolymbari, Aug 30, 2024

The LHC (with CMS)

- Run2 total recorded luminosity: 138 fb⁻¹ (Run3 so far: 142 fb⁻¹)^{Date}
- Unless otherwise noted, the presented analyses are Run2 with total recorded luminosity

The CMS detector

CMS DETECTOR STEEL RETURN YOKE Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 μ m) ~1m² ~66M channels Overall length Microstrips ($80x180 \mu m$) ~ $200m^2$ ~9.6M channels : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers PRESHOWER Silicon strips ~16m² ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels **CRYSTAL** ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

- Silicon pixel + strip tracker
- Lead/Tungstate EM calorimeter
- Brass/Scintillator Had calorimeter •
- Muon system embedded in return yoke
- Tungsten/quartz forward calorimeter

John Strologas, ICNFP-XIII, Kolymbari

Outline of this talk

- We present all new post-ICHEP CMS results
 - They were all released last 30 days
- Covering a variety of physics
 - Lepton Flavor Violation
 - Dineutrino measurement in top pairs
 - SUSY searches in dileptons+MET
 - Phenomenological MSSM interpretation of CMS results
 - Search of Dark matter associated to Higgs to taus
 - Search for HHWW couplings in Vector-Boson Scattering WWH
 - Search for t-channel leptoquarks
 - Search for Rare Charm Decay into 2 muons
 - Study of Small-Angle Emissions in charm jets
 - Energy-Energy Correlations in PbPb and pp collisions

Charged-Lepton Flavor Violation in tuμτ interactions

- 138 fb⁻¹, single-muon triggers, pt>24-27
- Exactly 1 isolated muon p_T>50 GeV and exactly 1 hadronic tau with pT>40 GeV with opposite charge and ΔR>0.4 away
 - VETO on additional leptons
- ≥3 jets, 1 b-tagged
- <u>Main backgrounds</u>: t-tbar (to l+jets and dileptons) and single top (much lower)
- Jet $\rightarrow \tau_h \underline{fake \ rates}$ are determined with the ABCD method and applied on all MC
- Top and hadronic W are reconstructed from chi-squared constructed from bjj and jj masses
- Deep NN with score 10% P(ttbar CLFV) and 90% P(single-top SLFV) divided by P(background)
- Data NN score is fitted to signal and background scores and limits on Wilson coefficients for CLFV are set

CMS-PAS-TOP-22-011

Measurement of dineutrino system in t-tbar production

- 138 fb⁻¹, single-lepton and dilepton triggers
- Signal: Top pairs to dileptons
- Opposite charge ee, μμ, eμ pairs with p_T>25, 20 GeV and |η|<2.4
 - VETO on additional leptons with p_T >15 GeV
- m_{II}>20 GeV and 15 GeV away from Z boson mass
- ≥2 jets (pT>30 GeV, |η|<2.4), 1 b-tagged
- <u>Main backgrounds</u>: t-tbar to lepton+jets (or taus), single top, DY+jets, Diboson, t-tbar+W/Z, W+jets
- Observables: p_T^{miss} and $\min[\Delta \Phi ig(p_T^{miss}, {f l} ig)]$
 - In one dimension but also 2-dimensional
- Resolution of p_T^{miss} improved with a Deep Neural Network
- Good agreement between observation and SM expectation
- Extraction of differential cross sections as a function of p_T^{miss} and $min[\Delta \Phi(p_T^{miss},l)]$ requiring at least 2 b-jets
 - First, backgrounds are removed from data and then spectra are unfolded

Measurement of dineutrino system in

t-tbar production (2)

CMS-PAS-SUS-23-002

- BSM signal: chargino-neutrlino or slepton production **Opposite charge ee, \mu\mu, e\mu pairs with** p_T>25, 20 GeV and |η|<2.4
 - VETO on additional leptons with p_T>10 GeV

138 fb⁻¹, single-lepton and dilepton triggers

- m_{II}>20 GeV and 15 GeV away from Z boson mass
- *p_T^{miss}*>160 GeV
- Main backgrounds: t-tbar, tW, WW
- **Observable:**

$$m_{T2}(\ell\ell) = \min_{\vec{p}_{T}^{\text{miss1}} + \vec{p}_{T}^{\text{miss2}} = \vec{p}_{T}^{\text{miss2}}} \left(\max\left[m_{T}(\vec{p}_{T}^{\text{lep1}}, \vec{p}_{T}^{\text{miss1}}), m_{T}(\vec{p}_{T}^{\text{lep2}}, \vec{p}_{T}^{\text{miss2}}) \right] \right)$$

- Further subdivisions of data based on bins of p_T^{miss} , • Same-Flavor/Different-Flavor, b-veto or jet-veto
- Good agreement between observation and SM backgrounds in Control Regions
- Simultaneous fit of m_{τ2} in Signal and Control Regions

9

10

SUSY searches in OS dilepton + p_T^{miss} (2)

Chargino-pair limits limits, chargino to slepton

Search for Dark Matter in association

with Higgs $\rightarrow \tau + \tau$

- 101 fb⁻¹ (for the Z' study 138 fb⁻¹)
- Signature: Two taus (at least one hadronic) + p_T^{miss}
- Single-electron and electron+tau triggers for $e\tau_h$, single-muon trigger for $\mu\tau_h$, and tau-tau trigger for $\tau_h\tau_h$
- Final objects have opposite charge and are ΔR >0.5 away
- e, μ (>25, 29 GeV) are isolated and their channel has τ_h above 30 GeV, b-jet veto and additional- lepton veto with p_T > 10 GeV
- In $\tau_{\eta}\tau_{h}$ channel the p_{T} are above 55 and 45 GeV and the p_{T} of they ditau system above 65 GeV
- All channels: p_T^{miss} >105 GeV, visible ditau p_T below 125 GeV, total transverse mass above 100 GeV and $\Delta R(\tau,\tau)$ <2
- Main backgrounds: faked taus in {W+jets, multijet, ttbar}
 - Fake factor determination, validated in control regions
- Observable: Total Transverse mass (>100 GeV to reduce DY)

 $M_{\rm T}^{\rm tot} = \sqrt{(E_{\rm T}^{\tau_1} + E_{\rm T}^{\tau_2} + p_{\rm T}^{\rm miss})^2 - (p_x^{\tau_1} + p_x^{\tau_2} + p_x^{\rm miss})^2 - (p_y^{\tau_1} + p_y^{\tau_2} + p_y^{\rm miss})^2}$

• Signal is extracted with simultaneous fits in all 3 signal regions

Phenomenological MSSM interpretation of CMS searches

CMS-PAS-SUS-24-004

- 138 fb⁻¹
- pMSMS with 19 parameters
- Scan of the parameter space with 600 Markov chains, about 40k pMSSM points each → 24 million pMSSM points
 - 500k points were randomly chosen for the studies

Analyses used:

- Soft Opposite Sign Aepton : low pT (<30 GeV), dileptons or trileptons, bins of p_T^{miss} and dilepton mass (CMS-SUS-18-004)
- p_T^{miss} + jets : 0 leptons, p_T^{miss} >300 Gev, bins of jet and b-tag multiplicity (**CMS-SUS-19-006**)
- Same-flavor opposite sign : two isolated SFOS leptons with p_T>30 GeV (CMS-SUS-20-001)
- Disappearing tracks : Search for SUSY with decay length of the size of the CMS detector (CMS-SUS-21-006)
- Single lepton ΔΦ: azimuthal angle difference between W and isolated lepton >30 GeV (CMS-SUS-21-007)
- Bayesian method to reject or accept a model : Survival probabilities: Fraction of models that survive CMS constraints
- Greater impact of CMS for more constraint priors (due to direct dark matter searches or due to naturaleness)

Search for HHWW couplings in the VBS production of WWH, $H \rightarrow bb$

- 138 fb⁻¹, single-lepton and dilepton triggers
- Signal: WWH+jj
- Two **same-sign** leptons (ee, eµ, µµ, e τ_h , µ τ_h) with pT>30 GeV and $|\eta|$ <2.5.
 - VETO on additional leptons (suppresses HHZZ)
- Two forward anti-K_t jets with R=0.4, $m_{jj}\!>$ 500 GeV, $|\Delta\eta_{jj}|\!>\!3$
- One fat jet with anti-K_t jets with R=0.8, ΔR=0.8 away from leptons (NN probability it originates from two b jets > 90%)
- <u>Main backgrounds</u>: t-tbar to lepton+jets or dileptons (minor ttbar+W/Z, single top, V/VV/VVV+jets)
- Observables: $m_{jj} \, and \, |\Delta \eta_{jj}|$
- Boosted decision tree separates signal from background (output fitted in Signal and Control Regions
- Good agreement between observation and SM expectation, limit on $\kappa_{\rm VV}$ coupling modifier

Search for HHWW couplings in the VBS production of WWH, $H \rightarrow bb$ (2)

At 95% k_{ww} is in [-3.3, 5.3](expected [-2.4, 4.4])

Search for t-channel scalar and vector leptoquarks in high-mass ee & µµ

- 138 fb⁻¹, single-electron and single-muon triggers
- Scalar and Vector leptoquarks are considered (<u>t-channel</u> is more sensitive to high masses and couplings) lepton couplings to u and d
- Two **opposite-sign**, same flavor leptons (ee, μμ) with pT>40, 15 GeV and $|\eta| < 2.5$ (2.4 for muons), m_{II}>500 GeV
- **Observables:** m_{\parallel} , y_{\parallel} , $cos(\theta)$ [angle between incoming parton and lepton in Collins-Soper frame]
- Main backgrounds: DY (~85%), t-tbar to dileptons (~10%), diboson (~5%), fakes (~0.5%)
- LQ signal and DY background templates of the differential cross section are constructed from DY MC
 - Free parameters are two angular coefficients of SM Z and two couplings (pure and interference) for LQ (separately for scalar and vector)
- Good agreement between observation and SM expectation, limit on scalar/vector couplinds e/μ to u/d

138 fb⁻¹(13 TeV)

Search for t-channel scalar and vector leptoquarks in high-mass ee & $\mu\mu$ (2)

For equal coupling values, the **vector** LQ production cross section is higher thus limits better

	Model	A_0	A_4	$y_{ m LQ}^2$
	S _{eu}	0.07 ± 0.07	1.61 ± 0.08	$-0.10^{+0.15}_{-0.17} (\text{stat})^{+0.07}_{-0.11} (\text{syst})$
	S _{ed}	0.07 ± 0.07	1.62 ± 0.08	$-0.09^{+0.20}_{-0.23}$ (stat) $^{+0.11}_{-0.13}$ (syst)
	$S_{\mu u}$	0.02 ± 0.06	1.59 ± 0.07	$-0.13^{+0.14}_{-0.15}$ (stat) $^{+0.06}_{-0.11}$ (syst)
	S_{ud}	0.02 ± 0.06	1.60 ± 0.07	$-0.11^{+0.18}_{-0.20}$ (stat) $^{+0.09}_{-0.13}$ (syst)
	Model	A_0	A_4	g_{LQ}^2
	Model V _{eu}	$\frac{A_0}{0.05\pm0.07}$	$\frac{A_4}{1.66\pm0.08}$	$\frac{g^2_{\rm LQ}}{-0.09^{+0.03}_{-0.03}~({\rm stat})^{+0.04}_{-0.08}~({\rm syst})}$
	Model V _{eu} V _{ed}	A_0 0.05 ± 0.07 0.06 ± 0.07	$\begin{array}{c} A_4 \\ 1.66 \pm 0.08 \\ 1.64 \pm 0.08 \end{array}$	$\frac{g_{\rm LQ}^2}{-0.09^{+0.03}_{-0.03}~({\rm stat})^{+0.04}_{-0.08}~({\rm syst})}\\0.13^{+0.06}_{-0.06}~({\rm stat})^{+0.17}_{-0.09}~({\rm syst})$
	Model V_{eu} V_{ed} $V_{\mu u}$	A_0 0.05 \pm 0.07 0.06 \pm 0.07 0.01 \pm 0.05	$egin{array}{c} A_4 \ 1.66 \pm 0.08 \ 1.64 \pm 0.08 \ 1.63 \pm 0.06 \end{array}$	$\frac{g_{\rm LQ}^2}{\begin{array}{c} -0.09\substack{+0.03\\-0.03} ({\rm stat})\substack{+0.04\\-0.08} ({\rm syst}) \\ 0.13\substack{+0.06\\-0.06} ({\rm stat})\substack{+0.17\\-0.09} ({\rm syst}) \\ -0.10\substack{+0.02\\-0.02} ({\rm stat})\substack{+0.04\\-0.08} ({\rm syst}) \end{array}}$
-	Model V_{eu} V_{ed} $V_{\mu u}$ V_{ud}	$\begin{array}{c} A_0 \\ 0.05 \pm 0.07 \\ 0.06 \pm 0.07 \\ 0.01 \pm 0.05 \\ 0.01 \pm 0.05 \end{array}$	$\begin{array}{c} A_4 \\ \hline 1.66 \pm 0.08 \\ 1.64 \pm 0.08 \\ 1.63 \pm 0.06 \\ 1.61 \pm 0.06 \end{array}$	$\frac{g_{\rm LQ}^2}{ -0.09^{+0.03}_{-0.03} ({\rm stat})^{+0.04}_{-0.08} ({\rm syst}) \\ 0.13^{+0.06}_{-0.06} ({\rm stat})^{+0.17}_{-0.09} ({\rm syst}) \\ -0.10^{+0.02}_{-0.02} ({\rm stat})^{+0.04}_{-0.08} ({\rm syst}) \\ 0.14^{+0.05}_{-0.05} ({\rm stat})^{+0.14}_{-0.07} ({\rm syst}) \\ \end{array}$

Best limits for LQ masses up to 5 TeV and first limits on LQ couplings to 1st and 2nd generation fermions

18

Search for rare Charm decays to µµ

CMS-PAS-BPH-23-008

- 64.5 fb⁻¹, **13.6 TeV**, new very low pT dimuon triggers
 - \geq 2 and 3 GeV
- Most previous studies probed b → s and s→ d. Here we probe c → u
- Signal: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \mu \mu$
- Observables: m(D⁰) and Δm = m(D^{*+}) m(D⁰)
- Measurement of branching ratio with respect to $D^0 \rightarrow \pi \pi$ to reduce uncertainties, Multivariate analysis
- Backgrounds on signal : $(D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow \pi \pi \rightarrow \mu \mu)$, $(D^*, D^0 \rightarrow \pi \mu \nu)$, combinatorics
- Backgrounds on normalization sample : $(D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K \pi)$, (non D*, $D^0 \rightarrow \pi\pi$ or K π), combinatorics
- 2D fit is used to extract limit

 $\mathcal{B}(\mathrm{D}^{0} \rightarrow \mu^{+}\mu^{-}) < 2.6 \times 10^{-9}$ at 95% CL

Small-angle emissions in prompt D⁰ jets

- 301 pb⁻¹, **5.02 TeV**, single calorimetry jet triggers (>60 and >80 GeV)
- $\int O \text{ Gev}_{J}$ Study charm jet substructure and small-and state in parton showering Two grooming algorithms: "late-k_T" which is sensitive to hard therm. And modified soft-drop that is sensitive to charm 120 GeV
- D^0 is reconstructed from K π decays, $\Delta R < 0.2$ from jet radius, with $p_T > 4$ GeV to reduce combinatoric background
 - Out of 2M jets with $100 < p_T < 120$ GeV, about 25K have a D⁰ in them
- Unfolding to particle level with Pythia, by matching particlelevel jets with charm to detector-level jets with D⁰
- Non-prompt D⁰ is removed using distance of closest approach significance.
- The angle between the harder and softer subjets are reported⁴ using the two grooming algorithms
 - 2-D simultaneous unfolding of jet p_T and splitting angle

"late-k_T"

"modified softdrop"

Energy-energy correlations from PbPb and pp collisions at 5.02 TeV

Red: n=1 Blue: n=2

- 5.02 TeV, 1.70 nb₋₁ for PbPb and 302 pb⁻¹ for pp, single calorimetry jet triggers (>60, >80 GeV and >100 GeV)
- Study 2-point energy-energy correlations in jets, in bins of centrality and p_T .
- Jets are reconstructed with R=0.4, $|\eta| < 1.6$
- Energy-Energy Correlations are defined as

$$\operatorname{EEC}(\Delta r) = \frac{1}{W_{\text{pairs}}} \frac{1}{\delta r} \sum_{\text{jets} \in [p_{\text{T},1}, p_{\text{T},2}]} \sum_{\text{pairs} \in [\Delta r_a, \Delta r_b]} \left(p_{\text{T},i} \, p_{\text{T},j} \right)^n$$

(W_{pairs} is the weighted number of pairs of tracks in jet – Results presented for n=1,2 and for p_T^{ch} >1 or 2 GeV

- Signal: tracks that come from fragmentation or jet-medium interactions. Background: other tracks, e.g., from underlying event
- Unfolding to particle level to remove jet p_T migrations. Background removed after the unfolding
- EEC results show clearly the free-hadron region, the transition region and the quark-gluon region
- Ratios between PbPb and pp results show the effect of quark –gluon plasma → The PbPb transition peak is shifted compared to pp collisions to lower values of Δr

Energy-energy correlations from PbPb and pp collisions at 5.02 TeV (2)

PbPb/pp ratios reveal effect of interaction with nuclear medium

- We presented the most recent CMS Physics Results
 - All of them became public within about a month
- All results, including the recent publications can be found at the public physics results web page
 - <u>https://cms.cern/org/cms-scientific-results</u>
- We are excited about Run3 of the LHC !!!

BACK UP

Charged-Lepton Flavor Violation in tuµτ interactions

Group	Variables	Description			Interaction	Туре	σ [fb]	$C_{\mathrm{tq}\mu au}/\Lambda^2[\mathrm{TeV}^{-2}]$	$\mathcal{B}(t ightarrow \mu au q)[10^{-6}]$
Muon (μ)	$p_{\mathrm{T}\mu}$, η_{μ}	p_{T} and η of selected muon				Scalar	2.039 (2.337)	0.182 (0.194)	0.040 (0.046)
Tau ($\tau_{\rm h}$)	$p_{\mathrm{T}\tau_{\mathrm{h}}}, \eta_{\tau_{\mathrm{h}}}, m_{\tau_{\mathrm{h}}}$	$p_{\rm T}, \eta$, and mass of se	$p_{\rm T}$, η , and mass of selected $\tau_{\rm h}$			Scalai	[1.574, 3.594]	[0.16, 0.241]	[0.031, 0.071]
Muon+Tau ($\mu \tau_{\rm h}$)	$m_{\mu\tau_{\rm h}}, \Delta\eta_{\mu\tau_{\rm h}}, \Delta\phi_{\mu\tau_{\rm h}}, \Delta R_{\mu\tau_{\rm h}}$	Mass and angular differenc		tu μau	Vector	2.384 (2.746)	0.09 (0.096)	0.078 (0.09)	
	$p_{T_1}, p_{T_2}, p_{T_3}$	$p_{\rm T}$ of jets ordered in in	creasing $p_{\rm T}$				[1.857, 4.213]	[0.079, 0.119]	[0.061, 0.138]
Lata	η_1, η_2, η_3	η of jets ordered in inc	η of jets ordered in increasing $p_{ m T}$			Tensor	2.834 (3.326)	0.045 (0.049)	0.118 (0.138)
Jets	m_1, m_2, m_3	Mass of jets ordered in i				[2.237, 5.003]			
	b_1, b_2, b_3	b tagging discriminant of jets or	dered in increasing $p_{\rm T}$		Scalar	Scalar	4.269 (5.02) [3.291, 8.142]	0.817 (0.886) [0.717, 1.128]	0.81 (0.953)
Event	$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse m		t_{CUT}		7 213 (8 552)	0 419 (0 457)	1 71 (2 027)	
t and W race	χ^2 , $m_{\mathrm{bjj}'}$, $m_{\mathrm{jj}'}$	minimum χ^2 and reconstructed		Vector Vector	Vector	[5.663, 13.734]	[0.372, 0.579]	[1.342, 3.255]	
t and w reco.	$\Delta\eta_{\mathbf{j}\mathbf{j}'}, \Delta\phi_{\mathbf{j}\mathbf{j}'}, \Delta R_{\mathbf{j}\mathbf{j}'}$	Angular differences of jets			Tensor	7.927 (9.633) [6.427, 15.2]	0.188 (0.207) [0.169, 0.26]	2.052 (2.494) [1.664, 3.936]	
		τ tight	D	В					
		τloose	С	А			$N_D^{misID} =$	$\frac{N_C N_B}{N_A}$	

SS μ, τ

OS μ, τ

but not tight

Measurement of dineutrino system in t-tbar production

Improvement in

 p_{T}^{miss} resolution

Process	e ⁺ e ⁻	$\mu^+\mu^-$	$\mathrm{e}^\pm\mu^\mp$	all
$t\bar{t}$ ($\ell\ell$)	$1.16 \times 10^5(75.2)$	$2.21 imes 10^5 (74.1)$	$5.31 imes 10^5 (80.2)$	$8.67 \times 10^5 (77.9)$
$t\bar{t}$ other	$1.82 imes 10^4 (11.8)$	$3.86 imes 10^4 (12.9)$	$9.05 imes 10^4 (13.7)$	$1.47 imes 10^5 (13.2)$
Single top	$6.15 imes 10^{3}(4.0)$	$1.17 imes 10^4 \ (3.9)$	$2.84 imes 10^4 (4.3)$	$4.63 imes 10^4 (4.2)$
DY+jets	$1.26 imes 10^4(8.2)$	$2.48 imes 10^4 \ (8.3)$	$6.87 imes 10^3 (1.0)$	$4.42 imes 10^4 \ (4.0)$
Diboson	$7.00 imes 10^2(0.5)$	$1.24 imes 10^3\ (0.4)$	$2.43 imes 10^3 (0.4)$	$4.36 imes 10^3 \ (0.4)$
t ī W/Z	$4.93 imes 10^{2}(0.3)$	$8.90 imes 10^2 (0.3)$	$1.82 imes 10^3 (0.3)$	$3.20 imes 10^3 (0.3)$
W+jets	$7.54 imes 10^1(0.0)$	$7.51 imes 10^1 \ (0.0)$	$8.82 imes 10^2 (0.1)$	$1.03 imes 10^3 \ (0.1)$
Sum MC	$(1.54 \pm 0.10) \times 10^{5}$	$(2.98 \pm 0.14) \times 10^5$	$(6.62 \pm 0.27) \times 10^5$	$(1.11 \pm 0.05) \times 10^{6}$
Data	$1.52 imes10^5$	$3.02 imes10^5$	$6.50 imes10^5$	$1.10 imes10^6$

	$\mathrm{SR1}_{\mathrm{0tag}}^{\mathrm{0jet}}$	$\mathrm{SR1}^{\mathrm{jets}}_{\mathrm{0tag}}$	CR1 _{tags}	$\mathrm{SR2}^{\mathrm{0jet}}_{\mathrm{0tag}}$	$\mathrm{SR2}^{\mathrm{jets}}_{\mathrm{0tag}}$	CR2 _{tags}	SR3 _{0tag}	CR3 _{tags}	SR4 _{0tag}	CR4 _{tags}
$p_{\rm T}^{\rm miss}$ [GeV]	160-220	160-220	160-220	220-280	220-280	220-280	280–380	380–380	\geq 380	≥ 380
$N_{\rm b\ jets}$	0	0	≥ 1	0	0	≥ 1	0	≥ 1	0	≥ 1
$N_{\rm jets}$	0	≥ 1	≥ 1	0	≥ 1	≥ 1	≥ 0	≥ 1	≥ 0	≥ 1
Channels	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF	SF, DF
$m_{\mathrm{T2}}(\ell\ell)$		0–20,	, 20–40, 40-	-60, 60-80,	80–100, 10	0–160, 160	-240, 240-3	$370, \geq 370$	GeV	

$m_{T2}(\ell\ell)$ [GeV]		0-20	20-40	40-60	60-80	80-100	100-160	160-240	240-370	≥ 370			
DF events												SN	A processes
SR1 ^{0jet}	SM Processes	98.2 ± 8.7	65.5 ± 5.7	77.4 ± 6.4	88.0 ± 7.6	50.4 ± 4.5	49.3 ± 5.8	11.4 ± 1.8			Source of uncertainty	Change in vields	Change in $m_{\rm Tr}(\ell\ell)$ shape
otag	Data	109	59 1140 18	70	97 1270 10	52	47	13			Integrated luminosity	1_3%	
$SR1_{0tag}^{jets}$	SM Processes	3467 ± 52 3545	1149 ± 18 1000	1388 ± 21 1368	1379 ± 19 1207	627 ± 14	181 ± 8 170	15.4 ± 2.2			Trigger officien av	1-070 20/	< 10/
Oiot	SM Processes	19.6 ± 2.4	10^{10}	13.6 ± 1.8	11.4 ± 1.6	4.5 ± 0.7	5.3 ± 1.0	6.8 ± 1.2	1.1 ± 0.4		Dilacon	∠ /o < 2 0/	< 1/0
$SR2_{0tag}^{0jet}$	Data	21	12.0 ± 1.0	12	13	1.0 ± 0.7 5	0.0 ± 1.0 7	8	2		Pileup	$\leq 2\%$	2-20%
opajets	SM Processes	1036 ± 24	289 ± 7	311 ± 7	267 ± 7	87.9 ± 3.3	28.7 ± 2.2	9.5 ± 1.5	1.3 ± 0.4		Jet energy scale	3-8%	2–10%
SR2' _{0tag}	Data	982	286	297	278	80	33	9	0		Jet energy resolution	1–2%	2-8%
SR3.	SM Processes	524 ± 14	124 ± 4	126 ± 4	105 ± 4	27.3 ± 1.7	10.4 ± 1.2	7.7 ± 1.2	6.4 ± 1.4		Unclustered energy	1–2%	2–13%
OltoOtag	Data	488	134	142	109	29	8	6	7		Lepton ident./isolation	2–4%	$\leq 15\%$
SR4 _{0tag}	SM Processes	180 ± 8	36.0 ± 2.2	36.7 ± 2.2	26.4 ± 1.7	7.3 ± 0.8	3.1 ± 0.5	3.7 ± 0.7	4.1 ± 1.0	3.1 ± 0.9	b tagging	$\leq 5\%$	$\leq 6\%$
CE avanta	Data	154	43	49	35	8	4	2	4	0	b tagging (light jets)	< 1%	$\frac{-}{<}3\%$
Sr events	SM Processes	119 ± 10	613 ± 51	73.4 ± 5.9	79.4 ± 6.7	424 + 36	627 ± 53	263 ± 25			Simulated samples statist	< 3%	
$SR1_{0tag}^{0jer}$	Data	119 ± 10	73	79.4 ± 5.7	82	40	70	20.0 ± 2.0 31			Renorm / fact_scales	2-23%	1–15%
optiets	SM Processes	3052 ± 49	999 ± 17	1186 ± 18	1153 ± 16	546 ± 14	215 ± 7	63.5 ± 3.8			PDFc	$< 2^{\circ}/_{\circ}$	< 9%
SR1 _{0tag}	Data	2992	1002	1142	1202	562	231	68			Droll Van normalization	$\leq \frac{2}{70}$	$\leq 9/6$
SR2 ^{0jet}	SM Processes	19.2 ± 2.1	12.7 ± 1.6	13.1 ± 1.8	12.8 ± 1.7	4.0 ± 0.6	6.6 ± 1.0	11.6 ± 1.8	2.6 ± 0.5		Dien-Tait normalization	$\geq 7/0$	≤ 20 /o
OK2 _{0tag}	Data	25	16	10	15	5	10	8	2		tw normalization	1-2%	$\leq 3\%$
SR2 ^{jets}	SM Processes	917 ± 22	248 ± 6	270 ± 7	236 ± 6	83.7 ± 4.3	35.4 ± 2.1	25.4 ± 2.1	9.7 ± 0.9		Minor bkg. normalization	$\leq 3\%$	1-8%
01 - Otag	Data	947	230	303	243	82	46	28	11		$m_{T2}(\ell\ell)$ tails	1–2%	5–20%
SR3 _{0tag}	SM Processes	460 ± 13	108 ± 4	111 ± 4 110	86.9 ± 3.2	26.7 ± 1.7	15.3 ± 1.6	16.5 ± 1.7	15.7 ± 1.7		Nonprompt leptons	< 1%	$\leq 8\%$
	SM Processes	434 164 ± 7	119 324 ± 20	$110 \\ 30.0 \pm 1.9$	$\frac{02}{245 \pm 18}$	$50 \\ 62 \pm 0.7$	$13 \\ 53 \pm 0.7$	20 38+06	13 81 ± 12	59 ± 10	$t\bar{t} p_{T}$ reweighting	1-6%	1-6%
$SR4_{0tag}$	Data	159	3434	31	24.5 ± 1.6 25	0.2 ± 0.7	5.5 ± 0.7 6	3.0 ⊥ 0.0 4	10	3.9 ± 1.0 8			
		- 27					<i>b</i>						

Search for HHWW couplings in the VBS production of WWH, $H \rightarrow bb$

Process	$\ell\ell$ category	$\ell \tau$ category
Signal	0.25	0.06
$t\bar{t} \rightarrow 1\ell$	18.02	36.69
$tar{t} ightarrow 2\ell$	1.51	1.33
tŦW	11.41	1.79
tīZ	1.50	0.58
Rare top	4.54	4.79
V/VV/VVV	1.57	3.09
Total background	38.56 ± 5.14	48.26 ± 8.52
Data	39	49

Search for t-channel scalar and vector leptoquarks in high-mass ee & µµ

VECTOR LQ

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}m_{\ell\ell} \mathrm{d}c_*} \propto \left[\frac{\mathrm{d}^2 \sigma}{\mathrm{d}m_{\ell\ell} \mathrm{d}c_*} \right]_{\mathrm{DY}} + g_{\mathrm{LQ}}^4 N_{\mathrm{LQ(pure)}}^V(m_{\ell\ell}) \left(\frac{1 + c_*}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right)^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^V(m_{\ell\ell}) \left[\frac{(1 + c_*)^2}{1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}} \right]^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ}}^2 + g_{\mathrm{LQ}}^2 + g_{\mathrm{LQ}}^2 N_{\mathrm{LQ(int)}}^2 + g_{\mathrm{LQ}}^2 + g_{\mathrm{LQ}}^2 + g_{\mathrm{LQ}}^2 + g_{\mathrm{LQ}$$