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Standard Model prediction: flavor-independent neutrino 
interaction through exchange of neutral Z-boson

Existence of CEvNS suggested for the first time in 1974

First experimental  detection in 2017

Exploring Coherent Elastic Neutrino-Nucleus 
Scattering 
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Fully coherent 
scattering for low 
neutrino energies

Kate Scholberg, Duke University VIA Seminar December 6, 2017, 
Observation of Coherent Elastic Neutrino-Nucleus Scattering

the beauty: high cross-section σCEvNS ∼ 10³ ∙ σIBD

the challenge: small recoil energies ECEvNS, Tungsten∼O(10 - 100 eV) 
from reactor neutrinos

→ Large cross-section allows to miniaturize target detectors to 
search at very low energies



Exploring CEvNS as a portal to various fields 
of particle physics
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Measurement of the Weinberg-angle at low energies

Additional contribution in 
CEvNS cross-section, e.g. 
Measurement of the neutrino 
magnetic dipole moment or 
light mediators would modify 
the recoil spectra

Neutrino background in dark 
matter search experiments

2021, https://arxiv.org/pdf/2104.07634.pdf/ 

CEvNS

Precision 
test of SM

Contribution 
to other 

rare-event 
searches

Beyond 
Standard 

Model 
Physic 

Searches



International European Collaboration with ~50 members

Munich, April 2024

We are the

4the NUCLEUS experimentNicole Schermer (TUM)



NUCLEUS concept: measure CEvNS from reactor 
neutrinos with gram-scale cryogenic detectors
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The “Very Near Site” at the Chooz 
Nuclear Power Plant:
• 2 x 4.25 GWth reactors
• 102 m and 72 m from the two 

reactor cores
• Neutrino flux ~ 1.7 1012 v/s/cm2

• 24 m2 basement room
• Overburden of 3 m.w.e.

Active and passive 
external shieldings

Active and passive 
cryogenic shieldings

Cryogenic target detectors

Goal: signal-to-background-rate > 1            (<100 BG counts/keV/kg/day)



Cryogenic target detectors: Gram-scale 
calorimeters with Transition Edge Sensors (TES)
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✓ Allows low threshold & good energy resolution
✓ NUCLEUS Al2O3 prototype: Eth=(19.7 +/- 0.8) eV [Phys. Rev. D 96, 022009 (2017)] 

✓ Good performances demonstrated over multiple measurements 
& in ongoing commissioning @TUM 

Multitarget approach: 
• CaWO4 offers a high CEvNS rate 
• Al2O3  for in-situ background measurement of 

neutrons leaving the same experimental 
signature as CEvNS (nuclear recoil) 

Target crystal equipped with TES, operated at ~20 mK temperatures

Threshold goal

Neutrino 
scatters off 
a nucleus in 

target 
crystal

Recoiling nucleus 
leads to temperature 

rise of cryogenic 
target crystals

Temperature rise 
leads to resistance 

change of 
superconducting W-

film of TES



Inner veto module: silicon wafers as 
instrumented holder for target detectors
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Pyramids as point-contact 
between crystals and silicon 

wafers for low phonon 
dispersion 

Thin inner veto wafer

Thick inner veto wafer

Support spheres

Target detectors

Holding plates with electrical & thermal contact

✓ Good performance of two target detectors in the inner veto module 
demonstrated: 6 eV baseline resolution & no cross-talk between detectors! 

Ongoing: 
optimization of 
inner veto TES 

design & validation 
of veto capabilities 

Inner veto to reject:

1. Surface events

2. Mechanical 
stress relaxation-

induced events 
(Low Energy Excess 

candidate) 



Gamma 
background Saturated 

muon peak

Muon plateau

Preliminary

Active cryogenic shielding: germanium outer veto 
to discriminate external gamma background
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Next steps: 
• Test of rectangular crystals (ongoing) 
• Scale up to 6 crystals with double-electrode readout

6 Ge crystals in 
copper holding 
structure 
arranged to cover 
4𝝅 around target 
detectors 

Outer veto goal:
 6 High purity 
Germanium detectors 
(4 kg, 2.5 cm thickness) 
with threshold 
O(1-10 keV)

✓ One cylindrical crystal operated:
Threshold of ~25 keV achieved with one-electrode readout 
(improvement to be expected with double-electrode readout) 



Active muon veto to discriminate muon induced 
backgrounds
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Muon veto
28 x 5cm thick plastic 
scintillator plates with SiPMs 
and WLS-fiber readout 
[V. Wagner et al 2022 JINST 17 T05020] 

Cryogenic muon veto:
for 4 π coverage 
(>99% geometrical efficiency)
 [A. Erhart et al Eur. Phys. J. C 84, 70 (2024)]

✓ Full Muon Veto in operation during the commissioning @TUM
✓ Muon Veto fully validated in terms of rates, spectral shape, calibration, efficiency, dead time 



Outer shielding: 5 cm lead + 
20 cm borated polyethylene 

Layered passive shielding to suppress ambient 
gammas, atmospheric and secondary neutrons 
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Cryogenic inner shielding: 
• Extension of the outer shielding inside the 

cryostat: cryogenic muon veto + lead + 
borated polyethylene, thermalized by 
copper disks

✓ Full thermalization of inner shielding 
(~50 kg of PE, Pb, Cu, CMV) achieved 
within 11 days

✓ External shielding fully 
commissioned and in place 

• Additional 4 cm boron carbide (B4C) layer around 
detectors for slow and thermal neutron reduction

• B4C production @Wintrustek (China) ongoing 



Vibration decoupling system for continuous 
cryogenic detector operation in a dry cryostat
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Kevlar wire for 
thermal isolation

Cryogenic 
detectors at 10mK 

✓ More than 4 weeks of stable continuous operation of 
cryogenic detectors during the commissioning run 
mostly independent of Pulse Tube vibrations

Dry dilution refrigerator to avoid handling of cryogenic liquids 
(BlueFors LD400) with a base temperature of ~10 mK 

Pulsed tube cryo-cooler: challenging vibration environment 

Custom vibration decoupling system developed and validated [patent protected]

Spring hanging freely
from room temperatur
ceiling inside cryostat 
and end of spring 
thermally coupled to 4K 
stage of cryostat

→ Noise reduction by a 
factor of  ~30 in target detectors

Preliminary



Simulations to investigate the background 
budget and to optimize the shielding strategy
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Background and signal budget in 
CaWO4 in 10-100 eV @Chooz 
(background upper limits) 

Signal-to-(known)background-ratio of ~1 can be achieved @Chooz!   [Publication in preparation]

PE shielding: factor 10 reduction in [0-1keV]
B4C shielding: factor ~3 reduction <200 eV
Ge Outer Veto: add. factor ~3 reduction in 
[0-1keV] for 1keV threshold

Preliminary

Preliminary



Investigating double-TES readout to reject events not originating in 
the absorber crystal (TES-only events) [promising measurements ongoing] 

Inner veto can discriminate holder-related stress 
events [validation ongoing]

Development of new analysis tools for sophisticating pulse 
shape discrimination: “ASPECT”: a modified matched filter 
[M. Cappelli et al 2024 JINST 19 P0603] 

Strategy to target unknow background:
the Low Energy Excess (LEE)
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Many low-threshold experiments 
observe rising event rates of yet 
unknown origins below a few hundred 
eV and above the background 
expectation → Significant impact on 
CEvNS sensitivity



Low energy calibration concept
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Low energy X-ray source: 

✓ Sub-keV X-ray fluorescence source 
used to detect the Fluorine-Kα line 
@677 eV in a single CaWO4 detector 
cube   [Publication in preparation] 

Nuclear recoil calibration with CRAB:

✓ Nuclear de-excitation after 
thermal neutron capture @112 eV 
unaffected by quenching effects 
detected in a single CaWO4 
detector cube [Phys. Rev. Lett. 130, 211802] 

LED calibration:

✓ Use monochromatic LED shining to 
detector and phonon statistics to 
measure the calibration constant 

✓ In-situ, continuous, sub-keV 
calibration w/o radioactive sources 

• State-of-the-art: calibration with keV-scale X-rays from 55Fe extended to nuclear recoil signal at eV energies

• Need to investigate detector non-linearities & nuclear recoil/ electron recoil differences



Goals: 

• Demonstration of stable detector operation and 
performance over months-long periods 

• Validation of shielding strategy: Background 
measurement & comparison to simulation

Commissioning at the shallow underground laboratory 
in Munich – the “Long Background Run” 
– continuous data taking since August 1st 
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Full Muon Veto 

Outer shielding

Inner shielding (w/o B4C) 

1x Ge Outer Veto detector 
2 x CaWO4 detectors 
1x Al2O3 detector 
(with double TES readout) 

LED calibration system ✓ Stability of cryogenic detectors 
and muon veto over > 4 weeks

COV stability over timeTES stability over time

Preliminary

Preliminary



Up next: Deployment at Chooz in the 
beginning of  2025
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the “Long Background Run”



Sensitivity to CEvNS observation:

•  ~30 counts/kg/day in 10 eV - 1 keV from 
CEvNS in CaWO4 

• With a targeted signal-to-background-ratio 
of ~1 & flat background (no LEE): 
5σ sensitivity in ~150 days lifetime 
(after cut efficiency and dead time) 

Outlook: expected performance with 10g of 
target mass (6g of CaWO4 and 4g of Al2O3)
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Beyond the Standard Model physics searches:

NUCLEUS sensitivity to light mediators and neutrino 
EM properties in the presence of the Low Energy 
Excess: competitive limits due to low threshold
 [in collaboration with phenomenologist M. Corona] 

Preliminary



NUCLEUS in the commissioning phase in Munich:

✓ External & cryogenic passive & active shielding @ TUM fully in operation

✓ Successful operation of cryogenic detectors

✓ Long background measurement @TUM with stable conditions ongoing

NUCLEUS future in Chooz:

✓ Laboratory at the Chooz nuclear power plant ready to welcome us

✓ Simulations and background budget for Chooz finalized

• Move to Chooz in 2025 for the first technical run with a light version of 
target detectors! 
→ First neutrino data, background measurement, LEE measurement… 

• Then: first physics run: Upgrade to 10g of target mass to measure CEvNS 
from a nuclear reactor and investigate neutrino properties

Conclusion
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Backup Slides
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X-Ray fluorescence XRF Setup with multiple targets  Spectrum with SDD
   and primary iron source

XRF Calibration
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CRAB Calibration
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• a thermalized neutron beam originates from a low-
power research reactor and enters the dilution 
refrigerator after being detected by a monochromator

• the neutron capture process excites the nucleus close 
to the neutron separation energy and decays via the 
emission of -rays and conversion electrons

• This process can induce a high-energy photon to 
escape the nucleus inducing nuclear recoils in the 100 
eV range for middle and heavy mass nuclei



TES consisting of:

• (a) Superconducting
    aluminum phonon
    collectors 

• (b) Superconducting
     tungsten film

• (c) Gold thermal link

• (d) Wire-bond pads

• (e) Ohmic heater

TES
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(a) (b) (d) (e)(c)



• The change in resistance of the TES needs to be measured to a very high precision < O(mOhm) while 
maintaining low readout currents < O(10 A) due to heating constraints

• Superconducting Quantum Interference Devices (SQUIDs) measuring very small changes in magnetic flux

• The TES is operated in a readout circuit, in which its resistance R_T is connected in parallel to a reference 
resistance R_R and an input coil of the SQUID, the whole circuit is biased with a constant current I_0. When 
a particle interaction leads to a change in the resistance of the TES R_T, the change in current in the TES 
branch induces a change of the magnetic field in the input coil of the SQUID.

SQUIDs
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Target detector holders
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• General:
• Oak Ridge, Spallation Neutron Source, pulsed proton beam
• During the spallation process of protons on a mercury target, pions are generated as a by-product and 

subsequently decay at rest
• neutrinos as by-product from pion-deacay-at-rest (pi+ → u+ & u-neutrino (prompt); u+ → e+ & e-neutrino 

& u-anti-neutrino (delayed))
• 2017: Observation on CsI [doi:10.1126/science.aao0990]

• Cs(133)I(127)
• Observed at ”6.7𝜎 confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed 

to the neutrino emissions from the Spallation Neutron Source”
• 𝐸𝜈 ∼ 30 MeV, CsI[Na]: 6.5 keV

• 2020: Observation on Ar with 3 sigma significance [doi:10.1103/PhysRevLett.126.012002]

• Ar(40), light element
• 24kg active-mass Lar scintillator detector, using quenching factor
• Uses pulse-shape discrimination to suppress ER BG <-> NR

• Cross-section consistent with the SM prediction
• Probing of the N^2 dependence of the cross-section

COHERENT Results
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