

Investigating the CME in isobaric $\binom{96}{44}Ru + \frac{96}{44}Ru$ and $\frac{96}{40}Zr + \frac{96}{40}Zr$) *collisions at* $\sqrt{s_{NN}}$ = 200 GeV using Sliding Dumbbell Method *with the STAR detector at RHIC*

Jagbir Singh (for the STAR Collaboration) Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

email: jagbir@rcf.rhic.bnl.gov

The STAR Collaboration <https://drupal.star.bnl.gov/STAR/presentations>

- •Introduction
- STAR Experiment
- Analysis Details
- Results
- Summary

Introduction

Chiral Magnetic Effect?

Strong magnetic field created by the fast-moving spectator protons and chirality imbalance causes the charge separation perpendicular to the reaction plane, known as the CME [1].

Massless Quarks produced in the system will have random spin orientations

- *• Imbalance of chirality*
- *Excess right/lefthanded quarks*

Strong B-field will align the spin of the quarks due to magnetic polarization

P. Tribedy, Free meson seminar, TIFR, Oct 7th, 2021

- The STAR at RHIC and the ALICE at the LHC have studied the CME by measuring the *γ* $\langle \text{correlator} \left(\gamma = \langle \cos(\phi_a + \phi_b - 2\Psi_{RP}) \rangle \right)$ [2].
	- [1] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).
	- [2] S. Voloshin, Phys. Rev. C 70, 057901 (2004).

B. Abelev et al., (ALICE Collaboration), Phys. Rev. Lett. 110, 012301 (2013).

Introduction

Isobar Collisions

- The magnetic field is \sim 10-18% larger in Ru+Ru collisions
- Expect enhanced CME effect in Ru+Ru collisions than Zr+Zr collisions.

P. Tribedy, Free meson seminar, TIFR, Oct 7th, 2021

Phys. Rev. C 105, 014901 (2022)

STAR Experiment

Two main detectors used in STAR for particle identification:

- **• Time Projection Chamber (TPC)**
- **• Time of Flight (TOF)**

The main characteristics of the STAR:

- Large coverage i.e., $\phi(0, 2\pi)$ and $\eta(-1, 1)$
- Excellent particle identification at low p_T using TPC and at intermediate p_T using TOF

Data Set: Isobaric collisions (Ru+Ru & $Zr+Zr$) at 200 GeV (\sim 1.7B each). Event and track selection cuts:

- $-35 < V_z < 25$ cm
- $|\eta|$ < 1
- $0.2 < p_t < 2.0$ *GeV/c*
- $DCA < 3$ cm

STAR (Solenoidal Tracker at RHIC)

Analysis Details Sliding Dumbbell Method

• The azimuthal plane in each event is scanned by sliding the dumbbell of $\Delta \phi = 90^\circ$ in steps of $\delta \phi = 1^\circ$ while calculating, Db_{+-} for each region to obtain maximum values of $Db_{+-} (Db_{+-}^{max})$ in each event with a condition that $Db_{asy} < 0.25$.

$$
Db_{+-} = \frac{n_+^a}{(n_+^a + n_-^a)} + \frac{n_-^b}{(n_+^b + n_-^b)}
$$

 n_+^a and n_-^a (n_+^b and n_-^b), the number of positive and negative charged particles on the "a" ("b") side of the dumbbell.

• *Db*_{asy} can be defined as: $Db_{asy} =$ $(N^{ex}_{+} - N^{ex}_{-})$ $(N^{ex}_{+} + N^{ex}_{-})$

N MR

M.M. Aggarwal et al., Pramana - J Phys 98, 117 (2024)

 N^{ex}_{+} (= $n^{a}_{+} - n^{a}_{-}$) is positive charge excess and N^{ex}_{-} (= $n^{b}_{-} - n^{b}_{+}$) is negative charge excess.

- Fractional Charge separation (f_{DbCS}) across the dumbbell with $Db_{asy} < 0.25$ in each event is defined as : $f_{DbCS} = Db_{+-}^{max} - 1$
- f_{DbCS} distributions are obtained for different collision centralities and divided into 10-percentile bins.

Background Estimation

- **Charge Shuffle (ChS)**: The charges of particles in each event are shuffled randomly to destroy the charge-dependent correlations amongst charged particles but keeping θ and ϕ of each particle unchanged in an event. This is termed as γ_{ChS} .
- **Correlated (Corr.) Background**: The shuffling of charges of particles in an event keeping the flow in, kills not only the CME-like correlations but also correlations amongst produced particles in an event. To restore the correlations among particles, which were destroyed during charge shuffling, the γ correlator is calculated from the corresponding events in the original events' sample for the sliced f_{DbCS} bin of ChS events. This is termed as γ_{Corr} . Since γ_{Corr} is derived from the original events themselves, it encompasses all types of correlations.

The background contribution (γ_{Bkg}) to γ is estimated as the sum of and γ_{Corr} :

$$
\gamma_{Bkg} = \gamma_{ChS} + \gamma_{Corr}
$$

- *1. M.M. Aggarwal et al., Pramana J Phys 98, 117 (2024).*
- *2. J. Singh (for the STAR Collaboration), Springer Proc.Phys.* 304, 464-468 (2024).

f_{DbCS} distributions for Ru+Ru and Zr+Zr collisions

• Charge separation (f_{DbCS}) distributions extend towards higher f_{DbCS} values with decreasing collision centrality.

Scatter plots of *f*^{*ChS*}_{*DbCS*} *vs <i>f*_{*DbCS}*</sub>

• There seems to be no correlation between f_{DbCS} of the charge shuffled event and the f_{DbCS} of the real event.

γ and *δ* correlators' dependences on centrality and f_{DbCS}

In- and Out-of-plane correlations for different charge combinations

11

bins.

60 50 40 30 20 10 0

Ru+Ru(In−Plane)

Zr+Zr(In−Plane) Zr+Zr(Out−of−Plane)

Ru+Ru(Out−of−Plane)

Centrality (%)

03/09/2024 ICNFP-2024, Jagbir Singh

드

−0.015

Δ *γ* dependence on centrality and *f*_{DbCS}

- $\Delta \gamma$ (= $\gamma_{OS} \gamma_{SS}$) is positive for the top 20% (30%) f_{DbCS} bins for 0-40% (40-60%) centralities.
- $\Delta \gamma$ is smaller for Ru+Ru than those of Zr+Zr collisions in top f_{DbCS} bins.

Comparison of Δ*γ* **with respective backgrounds** for each f_{DbCS} bin

- The data points for the top 20% or 30% f_{DbCS} bins look higher than the total background $(\gamma_{Bkg} = \gamma_{ChS} + \gamma_{Corr})$ for the 20-50% collision centralities.
- γ_{Corr} is derived from the original events themselves using f_{DbCS} bins of ChS events, it encompasses all types of correlations.

STAR

Double ratio for the top 0-20% *f***_{DbCS}**

• The double ratio is calculated as:

Double ratio =

\n
$$
\frac{(\Delta \gamma_{Data} / \Delta \gamma_{Bkg})_{Ru}}{(\Delta \gamma_{Data} / \Delta \gamma_{Bkg})_{Zr}}
$$
\n
$$
\Delta \gamma_{bkg.} = \Delta \gamma_{ChS} + \Delta \gamma_{Corr}
$$

• $\Delta \gamma_{data} / \Delta \gamma_{Bkg_{Ru+Ru}}$ seem to agree within errors those of $\Delta \gamma_{data} / \Delta \gamma_{Bkg}$ for the top 20% . *f DbCS*

• The double ratio is 1.007 ± 0.003 (pol0 Fit) for 0-60% centralities.

Summary

- The charge separation (f_{DbCS}) distribution extends towards higher f_{DbCS} values with decreasing collision centrality. There seems to be no correlation between f_{DbCS}^{ChS} and the . *f data DbCS*
- It is seen that $\gamma_{OS} > 0$ *and* $\gamma_{SS} < 0$ for the top 20% (30%) f_{DbCS} bins for 0-40% (40-60%) centralities. For 2-particle correlation, $\delta_{SS} > 0$ *and* $\delta_{OS} < 0$ in top f_{DbCS} bins (0-20%).
- Stronger correlations are seen in out-of-plane for both same-sign and opposite-sign charge pairs due to out-of-plane charge separation for top f_{DbCS} bins.
- It can be seen that $\Delta \gamma$ are smaller for Ru than those of Zr for the top 10% (top 20%) f_{DbCS} bins for $20-40\%$ (40-60%) centralities.
- We do not observe any enhancement in the background scaled $\Delta \gamma$ (i.e., $\Delta \gamma_{data}/\Delta \gamma_{Bkg}$) of Ru+Ru over $Zr+Zr$ for the top $20\% f_{DbCS}$ contrary to the expectation in isobar collisions and the double ratio is 1.007 ± 0.003 for 0-60% centralities.

Thank you for your attention!!

Different asymmetry of the dumbbell

Why do we chose $Db_{asy} < 0.25$?

• $Db_{asy} = 1$ gives one side charge excess of positive/negative charge particles