Pion Gravitational Form Factors in Holographic QCD

Mitsuru Tanaka Nagoya University Collaborators: D. Fujii and A. Iwanaka

arXiv:2407.21113 [hep-ph] (2024).

Gravitational Form Factors(GFFs)

GFFs: Form factors defined through gravitational interaction

The source of gravitation is the energy momentum tensor

Probing through several forces

M. Polyakov and P. Schweiter, Int. J. Mod. Phys. A 33, 1830025 (2018)

Why we focus on GFFs?

GFFs may provide us insights into the non-perturbative phenomena of QCD Remind: (confinement, chiral symmetry breaking etc.)

The tangental force distribution in the nucleon from $XOSM$ MIZER AND THE MOVE THE

There are some relations $GFFs \leftrightarrow GPD$, GDA

In the case of the nucleon,

$$
\int_{-1}^{1} dx \, xH^{a}(x,\xi,t) = A^{a}(t) + \xi^{2}D^{a}(t)
$$

$$
\int_{-1}^{1} dx \, xE^{a}(x,\xi,t) = B^{a}(t) - \xi^{2}D^{a}(t)
$$

GFFs lead us to tackle issues such as Origin of mass Proton spin crisis 。
。
。

D-term

D-term: the value of $D(t)$ in the forward limit $t \to 0$

The EMT of a spin-0 particle
\n
$$
\langle p' | \hat{T}^{\mu\nu}(x) | p \rangle = \left[2P^{\mu}P^{\nu}A(t) + \frac{1}{2} (\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^2) \widehat{D}(t) \right] e^{ix \cdot \Delta}
$$
\nA(0) must be 1 from general constraint
\n
$$
\mathbf{m} \colon \partial_{\mu} J^{\mu}_{em} = 0 \quad \langle N' | J^{\mu}_{em} | N \rangle \longrightarrow Q = 1.602176487(40) \times 10^{-19} \text{C}
$$
\n
$$
\mu = 2.792847356(23) \mu_N
$$
\nweak: PCAC
\n
$$
\langle N' | J^{\mu}_{weak} | N \rangle \longrightarrow g_A = 1.2694(28)
$$
\n
$$
g_p = 8.06(55)
$$
\ngravity: $\partial_{\mu} T^{\mu\nu}_{grav} = 0 \langle N' | T^{\mu\nu}_{grav} | N \rangle \longrightarrow m = 938.272013(23) \text{ MeV}/c^2$ \n
$$
J = \frac{1}{2}
$$
\n
$$
D = ?
$$

The global properties of the proton

D-term is sometimes called "The last unknown property of hadron"

D-term

Interesting property of the D-term of a pion

- In free Klein-Gordon theory, D-term takes the value -1
- Introducing the interactions, it deviates from -1
- However, for Nambu-Goldstone (NG) bosons, the D-term remains -1 due to the restriction by chiral symmetry

D-term might reveal the role of chiral symmetry

Experiment

The experimental progress is also remarkable.

Top-down Holographic QCD Approach to GFFs

We calculate the t-dependence of the pion's gravitational form factors from top-down holographic QCD (Sakai-Sugimoto Model).

The dictionary with holographic renormalization

Basically, if we determine $\delta g_{\mu\nu}$, we can extract $\langle T_{\mu\nu} \rangle$ of QCD from it.

The Einstein equation that $\delta g_{\mu\nu}$ follows

$$
\mathcal{H}_{MN} - \frac{g_{MN}}{2} \mathcal{H}_P^P = -2\kappa_7^2 \mathcal{I}_{MN}
$$

$$
\mathcal{H}_{MN} \equiv \nabla^2 \delta g_{MN} + \nabla_M \nabla_N \delta g_P^P - \nabla^P (\nabla_M \delta g_{NP} + \nabla_N \delta g_{MP}) - \frac{12}{L^2} \nabla_M \delta g_{MN}
$$

 T_{MN} : the EMT in the bulk

Fujita et al., PTEP 2022, 093B06 (2022)

Our analysis: The EMT in the bulk

We consider the case where the pion field is the matter field as source of T_{MN}

matter fields: $A_{\mu}(x^{\nu}, z) = 0$, $A_{z}(x^{\nu}, z) = \pi(x^{\nu})\phi_{0}(z)$

Action:

$$
S_{D8} = -\frac{C}{2\pi R_{11} g_s} \int (\delta(\tau) + \delta(\tau - \pi/M_{KK})) \sqrt{\frac{-G_{(11)}}{G_{\tau\tau}}} \frac{1}{4} G^{MN} G^{PQ} \text{tr}[F_{MP} F_{NQ}] + \cdots
$$

The metric in the SS model

$$
ds^{2} = \frac{r^{2}}{L^{2}} \left[f(r) d\tau^{2} - dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} + dx_{11}^{2} \right]
$$

+
$$
\frac{L^{2}}{r^{2}} \frac{dr^{2}}{f(r)} + \frac{L^{2}}{4} d\Omega_{4}^{2},
$$

$$
f(r) = 1 - \frac{R^{6}}{r^{6}}, \quad R = \frac{L^{2} M_{KK}}{3}, \quad L^{3} = 8 \pi g_{s} N_{c} l_{s}^{3},
$$

$$
R_{11} = \frac{\lambda}{2 \pi N_{c} M_{KK}}, \quad \lambda N_{c} = \frac{L^{6} M_{KK}}{32 \pi g_{s} l_{s}^{5}} = 216 \pi^{3} \kappa,
$$

 M_{KK} = 949 MeV, $\kappa = 0.00745$ in this study

Fujita et al., PTEP 2022, 093B06 (2022) 7/11

The definition of EMT
$$
T_{MN}
$$

\n
$$
T_{MN} = -\frac{2}{\sqrt{-G_{(11)}}} \frac{\delta S_{DB}}{\delta G_{(11)}^{MN}} \text{Vol}(S^4)
$$

Results

$$
A(t) = \frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{T}} \Psi_n^{\mathrm{T}}(r')}{(m_n^{\mathrm{T}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_t^{\mu\nu} \mathcal{T}_{\mu\nu}(\vec{\Delta}, r'),
$$

\n
$$
D(t) =
$$

\n
$$
-\frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{T}} \Psi_n^{\mathrm{T}}(r')}{(m_n^{\mathrm{T}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_s^{\mu\nu} (\mathcal{T}_{\mu\nu} + \mathcal{T}_{\mu\nu}^{\mathrm{S}} + \mathcal{T}_{\mu\nu}^{\mathrm{other}})
$$

\n
$$
+\frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{S}} \Psi_n^{\mathrm{S}}(r')}{(m_n^{\mathrm{S}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_s^{\mu\nu} \mathcal{T}_{\mu\nu}^{\mathrm{S}},
$$

\nWavefunctions of n's glueball of T_4/S_4 modes
\n
$$
\sum_{n=1}^{\infty} \frac{m_n^{T/S}}{\sqrt{\frac{6}{L^7}} \mathcal{H}} \int_R^{\infty} dr r \overline{\Psi_n^{T/S}(r)},
$$

\nMasses of n's glueball of T_4/S_4 modes
\nDecay constants of n's glueball of T_4/S_4 modes

To calculate infinite sums, we expand it in terms of momentum

$$
\frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{T/S}} \Psi_n^{\mathrm{T/S}}(r')}{(m_n^{\mathrm{T/S}})^2 + \vec{\Delta}^2} = \sum_{k=0}^{\infty} F_k^{\mathrm{T/S}}(r') (-\vec{\Delta}^2)^k,
$$

The pion GFFs $A(t)$ and $D(t)$ with the lattice data

Tanaka et al., arXiv:2407.21113 [hep-ph] (2024). D. C. Hackett et al., Phys. Rev. D 108, 114504 (2023)

Results

Tanaka et al., arXiv:2407.21113 [hep-ph] (2024). D. C. Hackett et al., Phys. Rev. D 108, 114504 (2023)

Results

$$
A(t) = \frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{T}} \Psi_n^{\mathrm{T}}(r')}{(m_n^{\mathrm{T}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_t^{\mu\nu} \mathcal{T}_{\mu\nu}(\vec{\Delta}, r'),
$$

\n
$$
D(t) =
$$

\n
$$
-\frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{T}} \Psi_n^{\mathrm{T}}(r')}{(m_n^{\mathrm{T}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_s^{\mu\nu} (\mathcal{T}_{\mu\nu} + \mathcal{T}_{\mu\nu}^{\mathrm{S}} + \mathcal{T}_{\mu\nu}^{\mathrm{other}})
$$

\n
$$
+\frac{6}{L^7} \int_R^{\infty} dr' \sum_{n=1}^{\infty} \frac{\alpha_n^{\mathrm{S}} \Psi_n^{\mathrm{S}}(r')}{(m_n^{\mathrm{S}})^2 + \vec{\Delta}^2} \frac{r'^3}{L^3} P_s^{\mu\nu} \mathcal{T}_{\mu\nu}^{\mathrm{S}},
$$

\nWavefunctions of n's glueball of T_4/S_4 modes
\n
$$
\widehat{Q}^{\mathrm{T}}(\vec{S}) = \frac{(\sum_{n=1}^{\mathrm{T}} \sum_{n=1}^{\mathrm{S}}) 2L^4}{\int_0^{\mathrm{S}} \int_R^{\infty} dr r \overline{(\Psi_n^{\mathrm{T}}/s(r))},
$$

\nMasses of n's glueball of T_4/S_4 modes
\nDecay constants of n's glueball of T_4/S_4 modes

Summary

- \checkmark We have calculated for the first time the t-dependence of the pion's gravitational form factor from top-down holographic QCD.
- \checkmark We have successfully reproduce the feature where the behaviors of $A(t)$ and $D(t)$ are different.
- \checkmark We obtained the D-term as $D(0) = -1$.
- \checkmark We have confirmed the glueball dominance.
- Future Works
- ➢ Extend to other hadrons

 \triangleright Investigate beyond the chiral limit by introducing the quark mass

Back Up

The comparison with lattice QCD

Brower at al., arXiv:hep-th/000315