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Outline

Micromegas detector basics
Principle of operation
Evolving technology
Various types of Micromegas

Overview of (some) applications
Radiation detection
Timing
Other (imaging, accelerators, cultural heritage...)
MM @ AUTh

Summary
Current status and future steps
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MM basics
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Typical Micromegas: Principle of Operation 

Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, MICROMEGAS: A high granularity position sensitive gaseous 
detector for high particle flux environments, Nucl. Instrum. Meth. A 376 (1996) 29–35

Characteristic advantages of the technology:

Drift gap/Conversion region
Ionizing particles create electrons, which 
drift towards readout plane.

Simplicity, Granularity, Homogeneity, Scalability, High 
rate capabilities, Radiation hardness, Low cost

Amplification region
Avalanches/amplification, charge 
movement induces signals.
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MM Fabrication techniques: mesh

Micromegas detectors are built using different types of 
meshes depending on the fabrication technique/application
 flat meshes made of thin  metallic sheets (4–10 µm), 

holes produced by micro-machining processes 
(electroforming, chemical etching etc.)

 mesh made of mechanically woven stainless-steel wires 
(18 μm up to 30μm typical wire thickness)

“Bulk” technology a big step for the 
industrialization/production of large scale MM

Micromegas in a bulk. Nucl. Instrum. Methods 2006, 560, 405–408

Principle: embedded metallic woven mesh on a 
Printed Circuit Board
 in Microbulk MM, mesh, pillars and read-out 

are constructed in a single structure
 bulk technology is applied to the majority of 

today’s MM
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Micromegas: various applications 

PICOSEC Micromegas for 
precise timing

MM used in numerous experiments:
 particle physics (LHC/ATLAS)
 dark matter (CAST)
 neutrinos (T2K)
 astrophysics
 neutron TOF experiments (n_TOF) 
  …

LM1 Micromegas for ATLAS 
New Small Wheel @ CEA – Saclay
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Applications: Timing
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Typical Micromegas: Limitations 

Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, MICROMEGAS:
A high granularity position sensitive gaseous detector for high particle flux
environments, Nucl. Instrum. Meth. A 376 (1996) 29–35

Characteristic advantages of the technology:

Drift gap/Conversion region
Ionizing particles create electrons, which 
drift towards readout plane.

Simplicity, Granularity, Homogeneity, Scalability, High 
rate capabilities, Radiation hardness, Low cost

 Ionizations occur in different positions along the 
particle’s trajectory → ~ ns time jitter for a 3-6 mm 
conversion region

 Diffusion effects

Amplification region
Avalanches/amplification, charge 
movement induces signals.
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The PICOSEC concept
Cherenkov radiator + Photocathode

 Particle produce Cherenkov light
 Photo-electrons emerge from photocathode
 Electrons amplified by a two-stage Micromegas

Signal components: Fast  <1ns (electron peak) &
 Slow ~100ns (Ion-tail)

Small drift gap (~200 μm) + High E-field:
 Pre-amplification possible
 Limited direct ionization
 Reduced diffusion impact

Cherenkov radiator/Photocathode:
Photo-electrons emerging the photocathode 

simultaneously (fixed distance from the mesh)
produce sufficient number of photo-electrons

Effect: improved timing resolution 

Red: MCP signal → t0

Blue: PICOSEC signal
e-peak
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The PICOSEC concept
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Red: MCP signal → t0
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e-peak

Te-peak Time (ns)

Te-peak = Signal Arrival Time (SAT) 

* SAT of a sample of events = <Te-peak >

* Time Resolution = RMS[Te-peak ] 

e-peak

J. Bortfeldt  et al. PICOSEC: Charged particle timing at sub-25 picosecond precision 
with a Micromegas based detectorhttps://doi.org/10.1016/j.nima.2018.04.033
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Towards large area coverage: modular design

single cell 
PICOSEC

Schematics/photos not to scale

segmented PICOSEC 
detector

multipad 
PICOSEC

single tile  
PICOSEC

tile window 
pattern PICOSEC

S. Aune et al., Timing performance of a multi-pad PICOSEC-Micromegas detector prototype, 
https://doi.org/10.1016/j.nima.2021.165076
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Applications: ATLAS New Small Wheel  
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Micromegas for ATLAS
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Micromegas wedge and module
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NSW single panel construction basics

 Panel is a sandwich of two skins glued on a stiff plane without mechanical constraints

 It consists of two PCBs (500μm) with aluminum made honeycomb and frame in between

• Super – flat surfaces are required as reference 
planes

• Granite + Stiff – back or Double Vacuum tables 
methods applied

• Single or dual step processes

vacuum tables stiff – back 

https://www.youtube.com/watch?v=uLJ60sPjOHg



                         C. Lampoudis – AUTh                                                 ICNFP2024 – Crete 27/08/2024

                          

17

32

17

NSW single panel construction basics

https://www.youtube.com/watch?v=goYfDWU1yws https://www.youtube.com/watch?v=uLJ60sPjOHg
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Applications: Muography 
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Atmospheric muons as an imaging tool

Applications
Investigation of large geological structures
Homeland security: cargo scanning, detection of heavy elements
Safeguards: e.g. characterization of encapsulated nuclear waste 
Natural hazard monitoring: volcanos

L.Bonechi et al. Review in Physics 5, 2020.

Exploit the abundant natural flux of muons produced from cosmic-ray interactions in the 
atmosphere.
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Muography: imaging based on muon detection 

Imaging via scattering
analyze the angles of deflection before 
and after passing through a volume

Imaging via absorption
principle is similar to conventional 
X-ray radiography

• Thickness of a mountain: George (1955)
• Hidden chambers in Chephren (or Khafre) pyramid: Alvarez (1970)
• Volcanology: Nagamine (1995), Tanaka (2001), Diaphane collaboration (2008)

Historical overview of  Muography
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Muography: imaging from muon flux 

S. Bouteille, et al. A Micromegas-based telescope for muon tomography: The WatTo experiment,
https://doi.org/10.1016/j.nima.2016.08.002  

Raw muographies of the Saclay water tower, with (left) and without (right) water in the tank. 

S. Procureur,. Muon imaging: Principles, technologies and applications, Nuclear Inst. and Methods in Physics Research, A 
878 (2018) 169–179 
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Micromegas @ AUTh
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NSW drift panels construction @ AUTh

CIRI – AUTh  

2016 – 2020 production line: delivered 105 MM drift panels

Facilities layout
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PICOSEC 

Similar detector configuration as the single – anode PICOSEC

Requirements aiming for a larger coverage detector
 Multi-channel capabilities (Cherenkov shared among pixel anodes)
 Robust photocathodes 
 Resistive readout for spark quenching in amplification gap
 Detector optimization

SAT for pad #7 timing resolution for pad #7

0 < R < 2mm: full Cherenkov cone (3mm) inside a single pad surface
2 mm < R < 4.33 mm
4.33 mm < R < 7.5mm: full Cherenkov cone (3mm) mostly outside a single pad 
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The “mini” Micromegas telescope (CIRI – AUTh)

12 x 10 cm2

Scintillator 2

Scintillator 1
20.2 x 23 

cm2

MM1
MM2
MM3
MM4

4 Micromegas (10 x 10 cm2 active area)

 anode board: XY 2-dimensional ~ 384 strips

 detection medium: Ar – CO2 gas 93%-7%

 APV25 readout cards (x6 per XY plane)

 signal reception via SRS (Scalable Readout 
System)

 trigger using 2 scintillators in coincidence
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MM Chambers

A single MM module consists of: 

 A Drift panel 

 Gas gap frame (with 2 o-rings) 
mounted on the Drift panel

 A Read-Out panel 
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Individual MM chamber: Cosmic ray test bench I

 Power Supply (CAEN Mod. 
A4531)

 Data Acquisition (APV25 & SRS)
 Trigger (scintillators)
 NIM units

 

Lab tests: module validation
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MM Telescope: full system installation

 Mounting of detectors

 Cables routing (Gas & HV)

 Mounting of peripherals (HV 
supplies,  Gas bottle etc.)

 

DAQ system

Custom made electronics (A. Tsirigotis H.O.U.)

Gas bottle
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MM Telescope at the Apollonia tumulus

 Power: Solar panels & power box

 Full system powered ON

 Addition of temperature sensors

 Telescope set @ 20 degs

 Test (trigger system + MM 
pedestal run)

 

EKATY project
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T. Papaevangelou et al., CEA – Saclay  

MM photocathode studies: solar blindness
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MM photocathode studies
 Micromegas chamber (PICOSEC version)

 Use of UV lenses coupled to MM

 Photocathode is the critical component of 
the detector

 Best possible QE for ~200nm range

 Candidates: CsI, B4C, DLC... 

 

T. Papaevangelou et al., CEA – Saclay  

Ongoing work
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Summary
Micromegas: a detector for multiple applications 

 High energy physics (e.g. ATLAS New Small Wheel)
 Rare event detection (e.g. CAST experiment)
 Neutron Data (e.g. n_TOF beam profile monitor)
 Nuclear physics and applications

 ...

Ongoing work to face new challenges 

 New materials and/or engineering solutions to improve further performance 
and radiation hardness

 Optimization of gas mix uses
 Advances in readout electronics
 ... 
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Micromegas ≡ Yannis  

 “Celebrating Ioannis”: on the 5th of October 2023 at CEA – Saclay, we celebrated 
Ioannis Giomataris scientific impact on our community
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Thank you!
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