Entropy of Unruh radiation from a spherical source with an exponential energy spectrum

Maksym Teslyk Larissa Bravina Evgeny Zabrodin

Fysisk institutt, UiO, Oslo

BOSTERIN

29.08.202

.
• 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece, G

[Unruh entropy for a spherical source](#page-25-0)

Unruh effect

[Unruh entropy for a spherical source](#page-0-0)

Macro: astrophysics

 $[$ https://agilefacil.wordpress.com/] [https://pressb[ook](#page-1-0)s.opl[in](#page-1-0)[e.](#page-2-0)[uc](#page-3-0)[f.](#page-4-0)[edu](#page-0-0)=], つへへ [Unruh entropy for a spherical source](#page-0-0)

Macro: astrophysics

Black hole is black Black hole is not black

[https://agilefacil.wordpress.com/] [https://pressb[ook](#page-2-0)s.opl[in](#page-1-0)[e.](#page-2-0)wc[f.](#page-4-0)[edu](#page-0-0)=],

[Unruh entropy for a spherical source](#page-0-0)

Micro: particle production

[Unruh entropy for a spherical source](#page-0-0)

 $2Q$

Micro: particle production

Inertial reference frame (IRF)

Minkowski vacuum $|0\rangle_M$

Þ

つくへ

4.171 [Unruh entropy for a spherical source](#page-0-0)

 \mathbf{h} 4 重 \sim ヨッ Inertial reference frame (IRF)

Minkowski vacuum $|0\rangle_M$

Non-inertial reference frame (NRF)

Acceleration a, horizon thermal radiation at temperature $T = a/2\pi$ [Unruh, 1976] Another basis is required \Rightarrow Rindler modes $\ket{n}_{\mathrm{in}}\ket{n}_{\mathrm{out}}$

IRF $|0\rangle_M$ is a pure state

NRF

Only $\left\vert n\right\rangle _{\text{out}}$ modes are detectable \Rightarrow mixed state

$$
\rho_{\text{out}} = \text{Tr}_{\text{in}} \left| 0 \right\rangle_M \left\langle 0 \right|_M
$$

$$
= \frac{1 - e^{-E/T}}{1 - e^{-NE/T}} \sum_{n=0}^{N-1} e^{-nE/T} \left| n \right\rangle_{\text{out}} \left\langle n \right|_{\text{out}}
$$

Eigenvalues of $\rho_{\rm out}$. probability to find *n* particles at energy E , temperature T , and(?) maximal multiplicity $N-1$

イロト イ母 トイヨ トイヨト

 \equiv

つくへ

IRF $|0\rangle_M$ is a pure state

NRF

Only $\left\vert n\right\rangle _{\text{out}}$ modes are detectable \Rightarrow mixed state

$$
\rho_{\text{out}} = \text{Tr}_{\text{in}} \left| 0 \right\rangle_M \left\langle 0 \right|_M
$$

$$
= \frac{1 - e^{-E/T}}{1 - e^{-NE/T}} \sum_{n=0}^{N-1} e^{-nE/T} \left| n \right\rangle_{\text{out}} \left\langle n \right|_{\text{out}}
$$

Eigenvalues of $\rho_{\rm out}$. probability to find n particles at energy E , temperature T , and(?) maximal multiplicity $N-1$ \equiv conditional distribution $\{n|E,T,N\}$

イロン イ押ン イヨン イヨン

Þ

Distribution & Shannon entropy H

Distribution $\{X\}$

Find x with probability $p(x)$: $\sum_{x} p(x) = 1$ $H(X) = -\sum_{x} p(x) \ln p(x)$

何 ▶ (三)

ヨッ

 Ω

Distribution & Shannon entropy H

Distribution $\{X\}$

Find x with probability $p(x)$: $\sum_{x} p(x) = 1$ $H(X) = -\sum_{x} p(x) \ln p(x)$

つくい

Joint distribution $\{X, Y\}$

Find $x \& y$ with probability $p\left(\text{\textit{x}},\text{\textit{y}} \right)$: $\sum_{\text{\textit{x}},\text{\textit{y}}} p\left(\text{\textit{x}},\text{\textit{y}} \right)=1$ $H\left(X,\, Y\right)=-\sum_{x,y}\rho\left(x,y\right)$ In $\rho\left(x,y\right)$

[Unruh entropy for a spherical source](#page-0-0)

Distribution & Shannon entropy H

Distribution $\{X\}$

Find x with probability $p(x)$: $\sum_{x} p(x) = 1$ $H(X) = -\sum_{x} p(x) \ln p(x)$

Joint distribution $\{X, Y\}$

Find $x \& y$ with probability $p\left(\text{\textit{x}},\text{\textit{y}} \right)$: $\sum_{\text{\textit{x}},\text{\textit{y}}} p\left(\text{\textit{x}},\text{\textit{y}} \right)=1$ $H\left(X,\, Y\right)=-\sum_{x,y}\rho\left(x,y\right)$ In $\rho\left(x,y\right)$

H is information we need to describe our system ≡ how much we do not know

Conditional distribution

Conditional distribution $\{X|Y\}$

Probability to find x being given y $p(x|y) = \frac{p(x, y)}{p(y)}, \quad p(y) = \sum_{y}$ x $p(x, y)$

つくい

Entropy

$$
H(X|y) = -\sum_{x} p(x|y) \ln p(x|y)
$$

[Unruh entropy for a spherical source](#page-0-0)

Conditional distribution

Conditional distribution $\{X|Y\}$

Probability to find x being given y $p(x|y) = \frac{p(x, y)}{p(y)}, \quad p(y) = \sum_{y}$ x $p(x, y)$

つくい

Entropy

$$
H(X|y) = -\sum_{x} p(x|y) \ln p(x|y)
$$

$$
H(X, Y) = H(Y) + \sum_{y} p(y) H(X|y)
$$

$$
= H(Y) + \langle H(X|y) \rangle_{y}
$$

Model assumptions

1. Particle spectrum

Energy of the particles: $m \le E \le M$ Exponential distribution: $p(E) = \frac{e^{-E/T}}{D}$ Other DOF contribute independently

2. $1D \rightarrow 3D$

Unruh effect is $D=1+1$ For $D=3+1$ one needs to take angular DOF into account $l = L$ l

$$
H \rightarrow \sum_{l=0}^{l-L} \sum_{-l}^{l} H = (L+1)^2 H
$$

$$
\sqrt{L(L+1)} = r\sqrt{E^2 - m^2}
$$

つくい

[Copilot, Wikipedia]

同 → → 三

$$
H = H(E|T) + \langle H(\rho, Q|E, T, N) \rangle_E
$$

= $(h_E + h_\rho + h_Q) H_{BH}$,

where h_E is the contribution of exponential energy spectrum, h_ρ describes the Unruh part, and h_Q stands for any other intrinsic DOF

Entropy of a Schwarzschild black hole $H_{BH} = \frac{1}{16\pi}$ $\frac{1}{16\pi T^2}$ is used for scaling reasons

つくへ

Notations

$$
f(x)\Big|_{x=a}^{x=b}=f(b)-f(a)
$$

Binomial coefficients:

$$
(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \qquad |x| < 1.
$$

Lower incomplete gamma function $\gamma(\nu, x)$:

$$
\gamma\left(\nu,x\right) = \int_0^x t^{\nu-1} e^{-t} dt = (\nu-1)! \left(1 - e^{-x} \sum_{j=0}^{\nu-1} \frac{x^j}{j!}\right)
$$

一 三 ト

э

$$
A_{nk} = \frac{4 (2\pi)^{1-2n} T^2}{e^{-m/T} - e^{-M/T}} {1/2 \choose n} {n \choose k} (-1)^{n-k} \left(\frac{m}{T}\right)^{2(n-k)}
$$

$$
B_{nk} = \frac{4 (2\pi)^{2n} T^2}{e^{-m/T} - e^{-M/T}} {1/2 \choose n} {1/2 - n \choose k} (-1)^k {m \choose T}^{2k}
$$

$$
\mu = \begin{cases} \sqrt{4\pi^2 T^2 + m^2}, & M > 2\pi T \\ M, & M < 2\pi T. \end{cases}
$$

[Unruh entropy for a spherical source](#page-0-0)

メロト メ部 トメ 君 トメ 君 ト

重

$$
h_E = 16\pi T^2 \left[-\left\langle \ln \mathrm{d}E \right\rangle_E + 1 + \ln T + \ln \left(e^{-m/T} - e^{-M/T} \right) + \frac{1}{T} \frac{me^{-m/T} - Me^{-M/T}}{e^{-m/T} - e^{-M/T}} \right]
$$

[Unruh entropy for a spherical source](#page-0-0)

メロトメ 伊 トメ ミトメ ミト

重

Term $\overline{h_{\rho}}$

$$
h_{\rho} = \sum_{n=0}^{\infty} \left\{ \sum_{k=0}^{n} A_{nk} \sum_{r=1}^{\infty} \frac{1}{(1+\beta r)^{1+2k}} \times \left[\frac{\beta}{1+\beta r} \gamma (2+2k,x) + \frac{1}{r} \gamma (1+2k,x) \right] \Big|_{x=(1+\beta r)m/T}^{x=(1+\beta r)\mu/T} + \sum_{k=0}^{\infty} B_{nk} \sum_{r=1}^{\infty} (1+\beta r)^{2(n+k-1)} \times \left[\frac{\beta}{1+\beta r} \gamma (3-2n-2k,x) + \frac{1}{r} \gamma (2-2n-2k,x) \right] \Big|_{x=(1+\beta r)\mu/T}^{x=(1+\beta r)\mu/T} \right\}_{\beta=N}^{\beta=1}
$$

[Unruh entropy for a spherical source](#page-0-0)

 $Term h_Q$

$$
h_Q = \frac{H(Q)}{\pi} \left[-\frac{M^2 - m^2}{e^{(M-m)/T} - 1} + 2T \frac{me^{-m/T} - Me^{-M/T}}{e^{-m/T} - e^{-M/T}} + 2T^2 (2\pi^2 + 1) \right]
$$

+ $H(Q) \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} A_{nk} \gamma (1 + 2k, x) \Big|_{x=m/T}^{x=\mu/T} + \sum_{k=0}^{\infty} B_{nk} \gamma (2 - 2n - 2k, x) \Big|_{x=\mu/T}^{x=M/T} \right]$

[Unruh entropy for a spherical source](#page-0-0)

メロン メ団 トメ ミン メ ミン

重

Results

 h_o as a function of upper energy bound M and temperature T for $m = 0$ Left: $N = 2$ Right: $N = 5$

[M.T. et al, Particles 7 (2024) 634]

Quantity $\frac{h_Q}{H(Q)}$ as a function of M and T for $m=0$

[M.T. et al, Particles 7 (2024) 634]

4 重 **II**

つくへ

Quantity $\frac{h_Q}{H(Q)}$ as a function of M and T for $m=0$

[M.T. et al, Particles 7 (2024) 634]

伊 ▶ (三)

つくへ

Conclusions

- \bullet The total entropy H of spherical Unruh source is estimated analytically for an exponential spectrum within arbitrary energy range.
- Particle multiplicity of the entropy allowed to analyze the contribution of both bosons and fermions.
- Additional degrees of freedom contribute equally likely to avoid perturbing the background metric.
- \bullet H = 0 for T = 0. The entropy gradually increases with temperature rising.
- The Unruh term h_{ρ} has a peak as a function of the upper energy bound M. The maximum becomes more pronounced for larger N.
- The results reveal strong dependence of the entropy on conditional distributions governing particle emission probability.

◀ㅁ▶ ◀包▶ ◀혼▶ ◀돋

 QQ