Equivariant Neural Networks

for Robust CP Observables

2405.13524

ICNFP2024, Kolumbari, Crete

Dr. Pietro Vischia

work with Sergio Sánchez Cruz, Marina Kolosova, Clara Ramón Álvarez, and Giovanni Petrucciani

pietro.vischia@cern.ch

@pietrovischia

https://vischia.github.io/

If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit
https://www.hep.uniovi.es/vischia/persistent/2024-09-04_EquivariantForCPAtICNFP2024_vischia.html
to get the version with working animations

SMEFT and CP Violation

- SMEFT: standard model extended by postulating high-mass BSM particles
- 1350 CP-even operators, 1149 CP-odd operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{C_i}{\Lambda^2} \mathcal{O}_i^{(6)}$$

EFT Observables

CP-violating operators

- SM contribution: mostly CP-invariant
- Pure BSM contribution: CP-invariant e.g. in top/Higgs sectors
- SM-BSM interference: odd under CP tranformations
- Sensitivity to the interference given only by CP-odd observables. LHC cross section program insensitive.
- CP-odd observables are robust against signal mismodelling/background

Our Algorithm

- Build observables that are *equivariant with respect to CP symmetry
 - CP-invariant observables
 - discriminate between different SM backgrounds
 - discriminate between SM and quadratic terms or CP-even contribution
 - CP-odd observables
 - discriminate between signal-like and interference-like contributions
 - discriminate between interference-like and other SM backgrounds
- We fix $n_1=0$ and $n_2=1$, obtaining a single CP-odd observable
 - \circ Can generalize to n_1 CP-invariant and n_2 CP-odd components

Our algorithm (reprise)

- ullet A function f:D o R is odd under CP transformations if f(CP(event)) = -f(event)
 - \circ Most general function satisfying this is f(event) = g(event) g(CP(event))
 - \circ We parameterize g using a neural network, training f to minimize a loss function
- Parameterizations of g: can be any parametric function, you don't strictly need a neural network
- Space of input features is fully general
 - Kinematics of set of particles, low- or high-level variables, particle set, graph network
 - Can also add features for background discrimination

Gutting the algo: the cost function

- Inductive bias (see the Machine Learning course!!) by learning the likelihood ratio
 - Method inspired by the SALLY procedure (Brehmer et al.)
 - Other loss functions can encode different properties (see recent example)
- ullet Weighted simulations: $w(z)=w_{SM}(z)+cw_{int}(z)+c^2w_{quad}(z)$
 - Weights are functions of parton level kinematics
- Intractable likelihood ratio:

$$rac{p(d,z|c_1)}{p(d,z|c=0)} = rac{w_{SM} + cw_{int} + c^2w_{quad}}{w_{SM}}$$

- ullet The likelihood score at the SM point will be a sufficient statistic for small values of c
 - \circ In the small-c regime, the linear component, describing the interference, is dominant
- Learn a surrogate model of the score

$$Loss=w_{SM}|f(d)-rac{w_{int}(z)}{w_{SM}^{
m etr}}|_{
m equivariant\,Networks\,for\,CP\,at\,ICNFP2024-2024.09.04--7/18}^2$$

- Dileptonic final state
 - Semileptonic difficult, need to estimate jet charge (BSc thesis of Santiago Vila Domínguez)
- CP-violating chromoelectric dipole moment operator

$$g_s rac{v}{\sqrt{2}} (ar{t} \sigma^{\mu
u} \gamma_5 T^A t) G^A_{\mu
u}$$

- The score after the training is CPodd!
 - Symmetric for SM
 - Any SM-like mismodelling/background will be symmetric by construction!
 - Constructive/destructive interference pattern for positive/negative values
- Equivariance respected at all stages of training

• The observable is robust even before training convergence

- Reweight events by the score, compare with parton-level CP-odd observables
- Reconstruct the ttbar system based on angles

```
\begin{aligned} c{rn}-c{nr}&=cos(I{r}^{+})cos(I{r}^{-}-cos(I{n}^{+}))cos(I{r}^{-}-cos(I{n}^{+}))cos(I{r}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(
```


Limitation is the reconstruction of the ttbar system

- Equivariance as inductive bias speeds up convergence
- Between 40% and 300% less iterations needed to achieve the same loss value!!!

Use case: WZ production

- Trilepton final state
- ullet CP-odd operator: $c_{ ilde{W}}$

$$\overrightarrow{p_{\ell^+}^{\mathbf{Z}}}, \overrightarrow{p_{\ell^-}^{\mathbf{Z}}}, \overrightarrow{p_{\ell}^{\mathbf{W}}}, Q^{\mathbf{W}}, \overrightarrow{p_{\mathbf{T}}^{\mathbf{miss}}} \text{CP}$$

$$-\overrightarrow{p_{\ell^-}^{\mathbf{Z}}}, -\overrightarrow{p_{\ell^+}^{\mathbf{Z}}}, -\overrightarrow{p_{\ell^+}^{\mathbf{W}}}, -Q^{\mathbf{W}}, -\overrightarrow{p_{\mathbf{T}}^{\mathbf{miss}}}$$

Use case: WZ production

- Performance on parton-level observables even better than dedicated observables!!!
 - Can capture energy growth
 - \circ Insensitivity to ϕ_W due to ambiguity in W decay reconstruction

Use case: ttgamma production

- Single lepton channel, CP-odd operator c_{tZ^l}
- Literature mostly checks photon p_T , which is CP-even

$$\overrightarrow{p_{\gamma}}, \overrightarrow{p_{\ell}}, Q_{\ell}, \overrightarrow{p_{b_{1}}}, \overrightarrow{p_{b_{2}}}, \overrightarrow{p_{j_{1}}}, \overrightarrow{p_{j_{2}}}, \overrightarrow{p_{j_{2}}}$$

$$-\overrightarrow{p_{\gamma}}, -\overrightarrow{p_{\ell}}, -Q_{\ell}, -\overrightarrow{p_{b_{2}}}, -\overrightarrow{p_{b_{2}}}, -\overrightarrow{p_{b_{1}}}, -\overrightarrow{p_{j_{1}}}, -\overrightarrow{p_{j_{2}}}, -\overrightarrow{p_{j_{1}}}, -\overrightarrow{p_{j_{1}$$

Use case: ttgamma production

- Linear contribution constrainable only by our approach
- c_{tZ^l} (CP-odd): Comparison with photon p_T is damning (for the photon p_T , which is CP even)
- c_{tZ} (CP-even): similar sensitivity

Use case: ttgamma production

- Assuming the SM: same sensitivity
 - Our approach retains performance in CP-even observables!
- BSM cases: our approach disentangles the sign of c_{tZ^l} !!!
 - Equivariant training is superior, even if not trained for quadratic components!

Conclusions

- Implemented equivariant networks to obtain robust observables for CP violation
- Inductive bias encoded in the network structure
 - Robust regardless of convergence status
 - Training is faster than regular network
- Benchmarks: ttbar, WZ, ttgamma
 - Our approach is better than existing state-of-the-art observables
- Extensions under exploration
 - Maybe CP-invariant networks (to target CP-even observables)
- Already being employed for upcoming CMS analyses

Thank you!

