# **Equivariant Neural Networks**

#### for Robust CP Observables

2405.13524

ICNFP2024, Kolumbari, Crete

Dr. Pietro Vischia

work with Sergio Sánchez Cruz, Marina Kolosova, Clara Ramón Álvarez, and Giovanni Petrucciani

pietro.vischia@cern.ch

@pietrovischia

https://vischia.github.io/











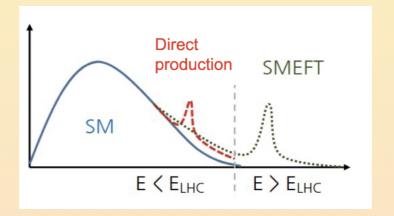


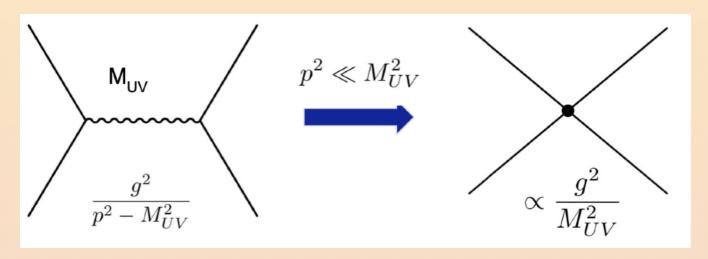
| If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit  |
|--------------------------------------------------------------------------------------------------|
| https://www.hep.uniovi.es/vischia/persistent/2024-09-04_EquivariantForCPAtICNFP2024_vischia.html |
| to get the version with working animations                                                       |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

#### **SMEFT and CP Violation**

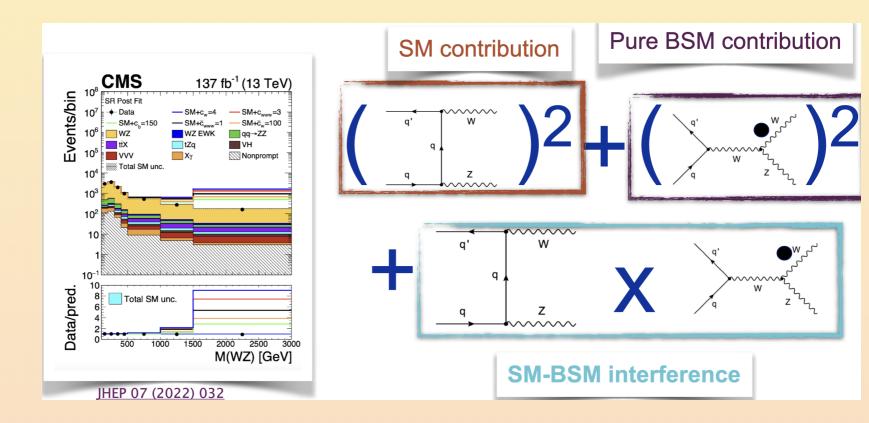
- SMEFT: standard model extended by postulating high-mass BSM particles
- 1350 CP-even operators, 1149 CP-odd operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{C_i}{\Lambda^2} \mathcal{O}_i^{(6)}$$





#### **EFT Observables**



#### **CP-violating operators**

- SM contribution: mostly CP-invariant
- Pure BSM contribution: CP-invariant e.g. in top/Higgs sectors
- SM-BSM interference: odd under CP tranformations
- Sensitivity to the interference given only by CP-odd observables. LHC cross section program insensitive.
- CP-odd observables are robust against signal mismodelling/background

#### **Our Algorithm**

- Build observables that are \*equivariant with respect to CP symmetry
  - CP-invariant observables
  - discriminate between different SM backgrounds
  - discriminate between SM and quadratic terms or CP-even contribution
  - CP-odd observables
  - discriminate between signal-like and interference-like contributions
  - discriminate between interference-like and other SM backgrounds
- We fix  $n_1=0$  and  $n_2=1$ , obtaining a single CP-odd observable
  - $\circ$  Can generalize to  $n_1$  CP-invariant and  $n_2$  CP-odd components

## **Our algorithm (reprise)**

- ullet A function f:D o R is odd under CP transformations if f(CP(event)) = -f(event)
  - $\circ$  Most general function satisfying this is f(event) = g(event) g(CP(event))
  - $\circ$  We parameterize g using a neural network, training f to minimize a loss function
- Parameterizations of g: can be any parametric function, you don't strictly need a neural network
- Space of input features is fully general
  - Kinematics of set of particles, low- or high-level variables, particle set, graph network
  - Can also add features for background discrimination

#### Gutting the algo: the cost function

- Inductive bias (see the Machine Learning course!!) by learning the likelihood ratio
  - Method inspired by the SALLY procedure (Brehmer et al.)
  - Other loss functions can encode different properties (see recent example)
- ullet Weighted simulations:  $w(z)=w_{SM}(z)+cw_{int}(z)+c^2w_{quad}(z)$ 
  - Weights are functions of parton level kinematics
- Intractable likelihood ratio:

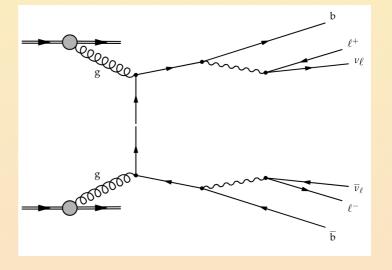
$$rac{p(d,z|c_1)}{p(d,z|c=0)} = rac{w_{SM} + cw_{int} + c^2w_{quad}}{w_{SM}}$$

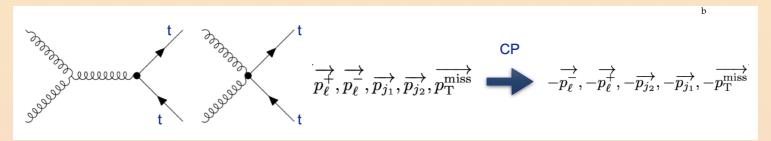
- ullet The likelihood score at the SM point will be a sufficient statistic for small values of c
  - $\circ$  In the small-c regime, the linear component, describing the interference, is dominant
- Learn a surrogate model of the score

$$Loss=w_{SM}|f(d)-rac{w_{int}(z)}{w_{SM}^{
m etr}}|_{
m equivariant\,Networks\,for\,CP\,at\,ICNFP2024-2024.09.04--7/18}^2$$

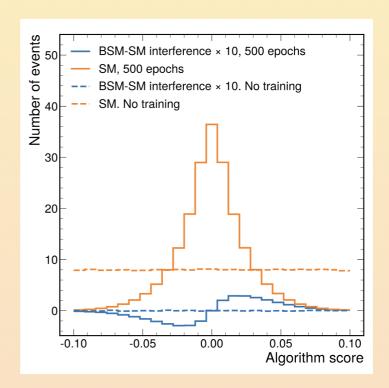
- Dileptonic final state
  - Semileptonic difficult, need to estimate jet charge (BSc thesis of Santiago Vila Domínguez)
- CP-violating chromoelectric dipole moment operator

$$g_s rac{v}{\sqrt{2}} (ar{t} \sigma^{\mu 
u} \gamma_5 T^A t) G^A_{\mu 
u}$$





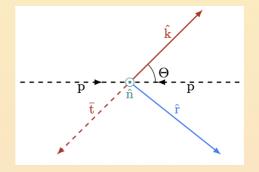
- The score after the training is CPodd!
  - Symmetric for SM
  - Any SM-like mismodelling/background will be symmetric by construction!
  - Constructive/destructive interference pattern for positive/negative values
- Equivariance respected at all stages of training



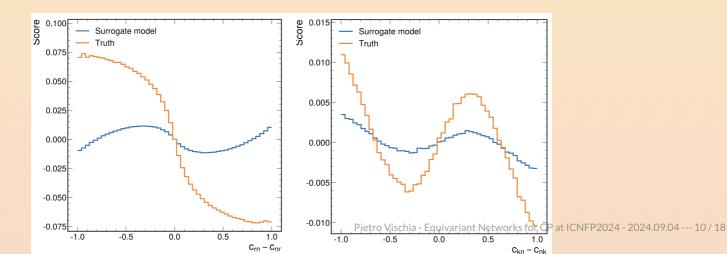
• The observable is robust even before training convergence

- Reweight events by the score, compare with parton-level CP-odd observables
- Reconstruct the ttbar system based on angles

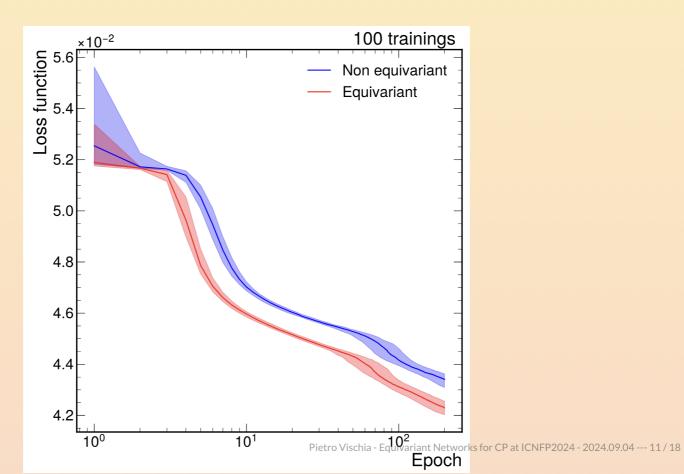
```
\begin{aligned} c{rn}-c{nr}&=cos(I{r}^{+})cos(I{r}^{-}-cos(I{n}^{+}))cos(I{r}^{-}-cos(I{n}^{+}))cos(I{r}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{k}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{+}))cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(I{n}^{-}-cos(
```



Limitation is the reconstruction of the ttbar system

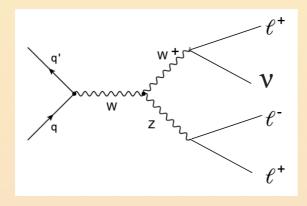


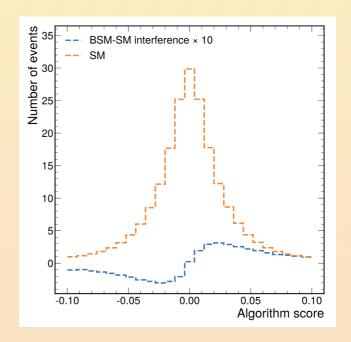
- Equivariance as inductive bias speeds up convergence
- Between 40% and 300% less iterations needed to achieve the same loss value!!!



## Use case: WZ production

- Trilepton final state
- ullet CP-odd operator:  $c_{ ilde{W}}$



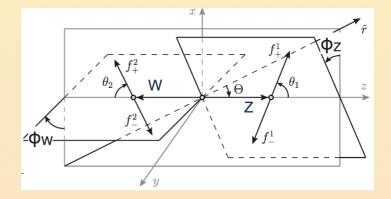


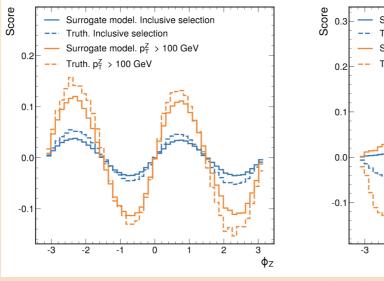
$$\overrightarrow{p_{\ell^+}^{\mathbf{Z}}}, \overrightarrow{p_{\ell^-}^{\mathbf{Z}}}, \overrightarrow{p_{\ell}^{\mathbf{W}}}, Q^{\mathbf{W}}, \overrightarrow{p_{\mathbf{T}}^{\mathbf{miss}}} \text{CP}$$

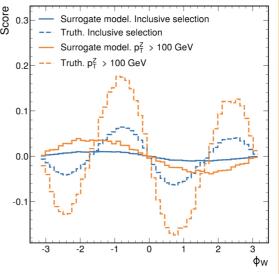
$$-\overrightarrow{p_{\ell^-}^{\mathbf{Z}}}, -\overrightarrow{p_{\ell^+}^{\mathbf{Z}}}, -\overrightarrow{p_{\ell^+}^{\mathbf{W}}}, -Q^{\mathbf{W}}, -\overrightarrow{p_{\mathbf{T}}^{\mathbf{miss}}}$$

#### Use case: WZ production

- Performance on parton-level observables even better than dedicated observables!!!
  - Can capture energy growth
  - $\circ$  Insensitivity to  $\phi_W$  due to ambiguity in W decay reconstruction

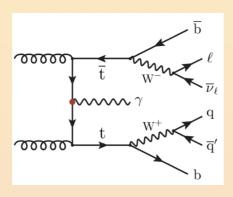


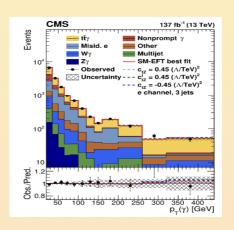




#### Use case: ttgamma production

- Single lepton channel, CP-odd operator  $c_{tZ^l}$
- Literature mostly checks photon  $p_T$ , which is CP-even



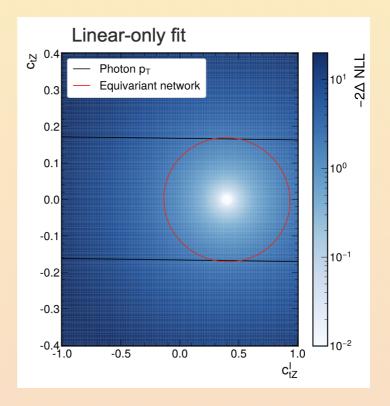


$$\overrightarrow{p_{\gamma}}, \overrightarrow{p_{\ell}}, Q_{\ell}, \overrightarrow{p_{b_{1}}}, \overrightarrow{p_{b_{2}}}, \overrightarrow{p_{j_{1}}}, \overrightarrow{p_{j_{2}}}, \overrightarrow{p_{j_{2}}}$$

$$-\overrightarrow{p_{\gamma}}, -\overrightarrow{p_{\ell}}, -Q_{\ell}, -\overrightarrow{p_{b_{2}}}, -\overrightarrow{p_{b_{2}}}, -\overrightarrow{p_{b_{1}}}, -\overrightarrow{p_{j_{1}}}, -\overrightarrow{p_{j_{2}}}, -\overrightarrow{p_{j_{1}}}, -\overrightarrow{p_{j_{1}$$

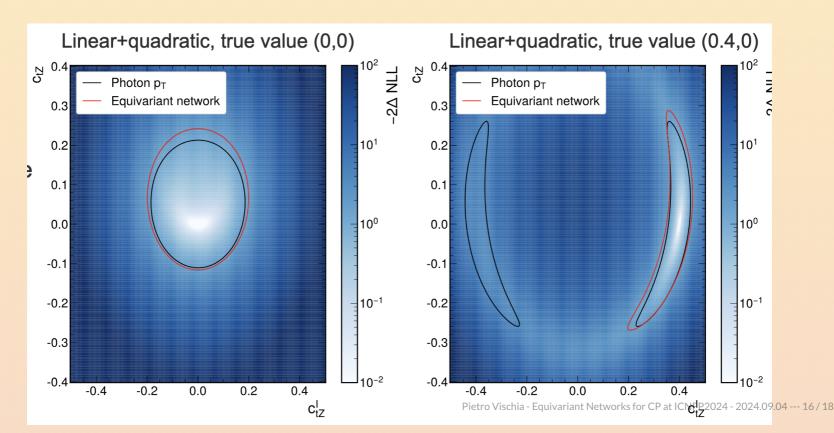
#### Use case: ttgamma production

- Linear contribution constrainable only by our approach
- $c_{tZ^l}$  (CP-odd): Comparison with photon  $p_T$  is damning (for the photon  $p_T$ , which is CP even)
- $c_{tZ}$  (CP-even): similar sensitivity



#### Use case: ttgamma production

- Assuming the SM: same sensitivity
  - Our approach retains performance in CP-even observables!
- BSM cases: our approach disentangles the sign of  $c_{tZ^l}$ !!!
  - Equivariant training is superior, even if not trained for quadratic components!



#### **Conclusions**

- Implemented equivariant networks to obtain robust observables for CP violation
- Inductive bias encoded in the network structure
  - Robust regardless of convergence status
  - Training is faster than regular network
- Benchmarks: ttbar, WZ, ttgamma
  - Our approach is better than existing state-of-the-art observables
- Extensions under exploration
  - Maybe CP-invariant networks (to target CP-even observables)
- Already being employed for upcoming CMS analyses

# Thank you!

