

Physics at the Large Hadron Collider

Victor T. Kim

The Large Hadron Collider: energies LARGE HADRON COLLIDER

туннель 27 км p-р, p-pB, Pb-Pb

2009: 1.18 ТэВ х 1.18 ТэВ $\begin{array}{c} \n\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\$ 2010-11: 3.5 ТэВ х 3.5 ТэВ $2012 \cdot 4$ T₂R \times 4 T₂ \angle Prize in \angle Prize \angle T $2022 - 23: 6.8$ Тэ $B \times 6.8$ Тэ B 2012: 4 ТэВ х 4 ТэВ 2015-18: 6.5 ТэВ х 6.5 ТэВ

eptember 26, 11

The hottest place in the Galaxy: $T \geq 5 \cdot 10^{12}$ K T_{Sun} = 1.6 \cdot 10⁷ K

The сoolest place in the Galaxy: T **≤** 2 K

CERN: WWW (Internet)

Tim Berners-Lee (1989)

Internet without WWW only: email, file transfer, remote login.

Data taking at the LHC: \sim 10 Gb/c LHC GRID: distributed computing and storage system at the LHC

Russia & JINR, Dubna: ~5-7%

Experiments at the LHC

\bigodot The Large Hadron Colliders: the experiments

CERN

LHC detectors: ATLAS, CMS, LHCb & ALICE

 $\frac{c}{c}$

LHC: pile-up

ATLAS и CMS work at the large number of parallel рр-collisions (pileup)

CMS Experiment at LHC, CERN Data recorded: Fri Oct 26 09:06:57:2018 CEST Run/Event 325309 / 244518 umi section.¹ Orbit/Crossing: 121529 / 1650.

2016; up to 50 vertices $2017 +$ Run 3: 50-80 vertices HL-LHC: 140-200 vertices

LHC data taking: ATLAS and CMS **Luminosity reminders**

LHC data taking start at 7 TeV: 2010

Run 1

- $7 \text{ TeV} (2011)$: \sim **5 fb**⁻¹
- 8 TeV (2012): **~20 fb-1**

Run 2 (2015-2018): 13 TeV **~140 fb-1**

Run 3 (2022-2025): 13.6 TeV ~300 fb⁻¹ triple statistics (from 140 to 440 fb⁻¹)

HL-LHC (2029-2041): 14 TeV \sim 3000 fb⁻¹ \times 20 statistics (from 140 to 3000+ fb⁻¹) **+ trigger/detector upgrades**

reaction rate = luminosity x cross-section event rate = time x reaction rate

Large Hadron Collider (LHC): main goals

- Higgs boson of the Standard Model - New particles and interactions beyond the Standard Model

and:

- Standard Model tests at new energies - New dynamics of the Standard Model: new states of quark-gluon matter, asymptotic QCD (BFKL), …

The Standard Мodel

 $\overline{}$

The Standard Model: remarkable and experimentally well tested theory

I ED and CM

o m

Elementary particle physics: symmetries and their violations

Principles: minimal action relativity local gauge invariance quantum uncertainty

…

Laws:

energy-momentum conservation electric charge conservation baryon charge conservation

… Principles and Laws are related with symmetries! And with their violations!

Relativity principle -> special relativity theory

Local relativity principle -> general relativity (gravity)

Energy conservation -> neutrino prediction

Pauli principle -> color (strong charge) of quarks

Local gauge invariance principle -> quantum field theory: the Standard Model

Within the Standard Model:

- -Where the Standard Model Higgs boson?
- Новые состояния кварк-глюонной материи?

Beyond the Standard Model:

- -Too many parameters: > 20
- Origin of mass of and mass hierarchy?
- Origin of CP-violation?
- Baryon-antibaryon asymmetry of the Universe?
- How incorporate gravity?
- -What are the Dark Matter and Dark Energy?

The discovered Higgs boson:

– In SM, the Higgs boson's mass is the only free parameter in the Higgs sector – **must be measured However:**

H(125) as a portal to BSM -

- being a theoretically-problematic oddity (scalar)
- and given its profound role in the SM,
- **Higgs boson just may turn out to be a unique portal to BSM unlike any other SM particle**

CMS has a broad program of searches for BSM associated with the discovered H125 :

- are there small deviations in H_{125} couplings to the SM particles?
- is it 100% pure CP-even scalar? is it truly point-like?
- are there BSM production modes? $(t \rightarrow qH, X \rightarrow HH,$ abnormal non-resonant HH)
- are there BSM decay modes? (H width, H \rightarrow invisible, H $\rightarrow \ell \ell'$ (CLFV), H \rightarrow BSM particles)
- And, of course, are there more BSM spin-0 particles? (another scalar, pseudoscalar, H^{\pm} , $H^{\pm\pm}$)

INFN A LONGS ROSADIFOR H(125) **Higgs boson: discovery in 2012**

Since discovery stat increased x ~30 ~10M Higgs produced per experiment ATLAS ~180 papers, CMS ~150 papers published/submitted on Higgs physics after discovery

Entered in the Higgs precision physics era

Spontaneous symmetry breaking

Idea: L.D. Landau, V.L. Ginzburg Conception: N.N. Bogolyubov – condensed matter Y. Nambu (1960), J. Goldstone (1961) – particle physics

Brout-Enclert-Higgs mechanism:

- nonrelativistic version: Ph.Anderson (1962)

- relativistic version:
- R. Brout, Ph. Engclert (1964)

->

P. Higgs (1964)

J.Guralnik, K.Hagen,T. Kibble (1964)

S.Weinberg (1967) и A. Salam (1968) applied Brout-Enclert-Higgs mechanism to electroweak theory of Sh. Glashow (1962)

Standard Model with massive W and Z vector bosons

July 2013: SM Higgs boson established!

July 2013, European Physics Society Conference CMS and ATLAS: SM BEH boson 125 GeV на уровне 7σ

François Englert and Peter Higgs Photo: © CERN

2013 Nobel Prize in Physics

Higgs boson in the Standard Model

 $+$ ϵ $\overline{\Psi}$

In the SM, the Higgs mechanism provides masses to bosons and fermions

- Higgs boson discovery in 2012 opens a whole new sector of the Lagrangian
- Yukawa couplings not required by EWSB
	- \Rightarrow ad-hoc solution to generate fermion masses

Main questions to answer

- Is the SM structure of the Lagrangian correct?
- Are the values of the couplings as predicted in the SM ?
- \Rightarrow Broad programme at the LHC

 H

LHC: Higgs boson –> main production modes

LHC: Higgs boson –> decay modes

G

LHC: Higgs boson production with t quarks

Possible thanks to major advances in data analysis strategies that use novel neural network algorithms!

Analysis workflows made more efficient thanks to a more compressed data format.

- . Higgs boson and top quarks: Phys. Rev. Lett. 120 (2018) 231801
- Higgs boson to bottom quarks: Phys. Rev. Lett. 121 (2018) 121801
- . Higgs boson to tau leptons: Phys. Lett. B 779 (2018) 283

Higgs boson: mass

-

 $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$ are workhorse channels **Run 1 + 2016 results: 125.38 ± 0.14 GeV** PLB 805 (2020) 135425 still the most precise

Statistical powers of the two channels are similar

Emerging challenge in $H \rightarrow \gamma \gamma$: syst. uncertainties become a limiting factor

Run 2: Results in 2023, *expect precision <100 MeV*

HL-LHC: Expected precision ~20 MeV CMS PAS FTR-21/007 and 21/008

Higgs boson: coupling with bosons and ferm \blacksquare

CERN

Agreement with the SM within available uncertainties

School "High Energy Physics and Accelerator Technology", Almaty, 9-13 October 2023 «Physics at the LHC» Victor Kim

H→bosons H→fermions

Recent results: coupling with 2nd generations

CERN

First evidence for coupling with 2nd generation fermions

ATLAS: **2.0σ** (1.7 exp) μ=1.2 ± 0.6 CMS: 3.0σ (2.4 exp) μ =1.19 ± 0.43

One of the most striking progress in Run2: **Reached sensitivity to ~ x8 SM (BR H** \rightarrow **cc 0.029)**

Huge improvement thanks to novel H→cc **taggers**

Agreement with the SM within available uncertainties

Higgs boson: decay width HIGGS TOTAL WIDTH

Interference with off-shell Higgs boson

Higgs boson: signal strength External Strength
Financipal Strength

Fit data from all production modes and decays with a common signal strength wrt SM

$$
\mu = \frac{\sigma \cdot BR}{\left(\sigma \cdot BR\right)_{\rm SM}}
$$

ATLAS Run2 CMS Run2 $\mu = 1.002 \pm 0.036(th) \pm 0.033(exp) \pm 0.029(stat)$ $\mu = 1.05 \pm 0.04(th) \pm 0.03(exp) \pm 0.03(stat)$

ATLAS+CMS Run1 (20+20 fb-1 @ 8 TeV) $\mu = 1.09 \pm 0.07(\text{sig. } th) \pm 0.03(\text{bkg. } th) \pm 0.04(\text{exp}) \pm 0.07(\text{stat})$ JHEP 2016, 45 (2016)

Agreement with the SM within available uncertainties

Higgs boson: coupling with the SM particles RUNCE BOSON: COUPLED With the SM pa

CERN

Agreement with the SM within available uncertainties

Higgs boson: precision physics

The ATLAS/CMS Higgs Run2 legacy: entered the Higgs precision physics era

- Mass at 0.1%
- Boson couplings known at ~5%, ~10% for heaviest fermions
- Huge progress to look for 2nd generation couplings, self-coupling, anomalous BSM couplings

These performance are much better than what expected just 10 years ago:

theory & experiment interactions a game changer

Run3: double Run2 stat, ~300 fb-1@13.6 TeV

From 2029 HL-LHC: up to 4000 fb-1, ATLAS/CMS detector upgrades

- ~180M Higgs/experiment by end of HL-LHC
- Prospects are very high
- Projections keep improving (thanks to better delivered analysis sensitivities)

A possible deviation from the SM: New Physics indication

Running couplings: α **_{OCD},** α **_{EW}**

Running masses

Different mass parameterizations

- **(different approaches to include higher orders):**
- **- pole (on-shell) mass**
- **- running mass**

SM running masses

- **- fermions and vector bosons: logarithmic**
- **- scalar Higgs boson: logarithmic or/and quadratic ? quadratic -> "non-naturalness"**

THIGGS BOSON decay width the series of the Higgs boson decay width

0*.*3 MeV. At the ³

Width of Higgs boson decay into b-quarks (up to N⁴LO) **P. Baikov, K. Chetyrkin, J. Kuhn (2006) A. Kataev, V. K. (2008)**

Higgs boson: if logarithmic mass evolution

Higgs boson defines electroweak vacuum density (meta)stable vacuum up to Planck scales

F. Bezrukov, M. Kalmykov, B. Kiehl & M. Shaposhnikov, JHEP 10 (2012) 140

One may conclude:

(Almost) no need for a New Physics up to Planck scales Only needs:

- (~ 1 GeV) BSM neutral leptons to explain Dark Matter
- strong CP-problem
- neutrino masses
- **- baryon-antibaryon asymmetry**
- …

- and still explain why there is naturalness (New Physics?!)

Standard Model with 125 GeV Higgs boson

Higgs boson mass defines electroweak vacuum density Meta-stable vacuum

- **G. Degrassi et al., JHEP 08 (2012) 098**
- **D. Butazzo et al., JHEP 12 (2013) 089**
- **A. Bednyakov et al., Phys. Rev. Lett. 115 (2015) 201802**

Logarithmic evolution of theory parameters: weak dependence between low and very large scales -> concept of "Naturalness"

- **- Scalar field is simple, but "non-natural": scalar mass evolution is quadratic, not logarithmic K. Wilson, Phys. Rev. D3 (1971) 1818** L. Susskind, Phys. Rev. D20 (1979) 2619
- **- Scalar field is not protected by a symmetry, while fermions are protected by chiral symmetry G. 't Hooft, Proc. Cargese Summer Inst. (1980)**

```
for reviews see G. Giudice, (2008)
```


Matrix Naturalness of the Standard Model in 1-loop $\textcircled{\text{\sf F}}$ 2λ σ model, and we neglected the corrections depending logarithmically on the cuto σ . **Example 31 Naturalness of the Standard Model in 1-loop (3)** broken supersymmetry models [4]). More generally, if one rejects unnatural fine tunings of fundamental parameters,

M. Veltman, Acta Phys. Pol. B12 (1981) 437 waltman Acta Phys P

renormalization scheme dependence for scalar particles: $m_H^2 = m_0^{}_H + C_L(\lambda_i, m_i) \cdot \log(\frac{\Lambda_L^2}{m})$ $m_H^2 = m_0^2 + C_L(\lambda_i, m_i) \cdot \log(\frac{\Lambda_{UV}^2}{m^2}) + C_X(\lambda_i, m_i) \cdot \Lambda_{UV}^2$ JX o2HiKM URN3RV renormalization scheme dependence for scalar particles: $m_H^2 = m_0^2 + C_L(\lambda_i, m_i) \cdot \log(\frac{\Lambda_{UV}^2}{m^2}) + C_X(\lambda_i, m_i) \cdot \Lambda_{UV}^2$ $m^2 = m^2$ is $C(0,m)$ is $\frac{\Lambda_{UV}^2}{\Lambda_{UV}}$ is $C(0,m)$ is the case for softly Λ_{UV}^2 $\delta u_H - u_0_H + \epsilon_L(\lambda_i, u_i) \cdot \log(\frac{m}{m^2}) + \epsilon_K(\lambda_i, u_i) \cdot \Delta_{UV}$

pnysical scnemes \rightarrow $C_X \neq 0$
schemes with dim regularization (M) benemes with all the regularization (ivid, ...) $\sqrt{2}X=0$ "physical" schemes $\rightarrow C_X \neq 0$ schemes with dim. regularization (MS, $...$) \rightarrow $C_X=0$ interval introduceducing one showled also point out a mechanism that keeps the highest point of \overline{M} and \overline{M} (\overline{M} and \overline{M}) between \overline{M} and \overline{M} introducing scalar fields one should also point out a mechanism that keeps the hierarchy between *m* and ⇤ (the

MSbar reproduces quadratic divergence at D = 2, L=1 dive er g ence en la composició de
En la composició de la co
 $at D = 2, L=1$

$$
m_H^2 = m_{H0}^2 + \delta m_H^2 \qquad \qquad v = 246 \,\text{GeV}
$$

$$
\delta m_H^2 \approx \frac{\Lambda^2}{16\pi^2} \left(24y_t^2 - 6(2y_W^2 + y_Z^2 + y_H^2) \right) \sim 8.2 \frac{\Lambda^2}{16\pi^2} \qquad y_i \equiv \frac{m_i}{v}
$$

*m*² **H** a <mark>ural</mark>ı 24*y*² *^t* 6(2*y*² *^W* + *y*² *^Z* + *y*² *H*) ⇠ 8*.*2 **D** GeV *yⁱ* ⌘ *mⁱ v* weltman criterion): Non-naturalness of Higgs boson at Λ > 550 GeV *F* $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

yⁱ ⌘ $\delta m_H^2 \approx m_H^2$ $\partial m_H^2 \approx m_H^2$ ($\Lambda = 550\,{\rm GeV},\,\, m_H = 125\,{\rm GeV}$)

School "High Energy Physics and Accelerator Technology", Almaty, 9-13 October 2023 «Physics at the LHC» Victor Kim *v* $$ is and Accelerator Technology", Almaty, 9-13 October 2023 kendysics at the LHC» Victor Kim School "High Energy Physics and Accelerator Technology", Almaty, 9-13 October 2023 «Physics at the LHC» Victor Kim ⇤ as a fundamental scale, but as a scale up to which we can use the low energy e↵ective theory implying Eq. (1).

Barbieri-Giudice (BG) condition: sensitivity physical parameters for small variation of bare ones R. Barbieri, G.F. Giudice, Nucl. Phys. B306 (1988) 63

Using BG condition with both **quadratic and logarithmic contributions leads to extention of Naturalness domain of SM: up ~ O(10 TeV) instead of ~ O (1 TeV)** VK, G. Pivovarov, Phys. Rev. D78 (2008) 016001

Regular way for scalar boson mass evolution with **quadratic mass divergences** G. Pivovarov, Phys. Rev. D81 (2010) 076077 are two important sources of the one-loop level. One is the one-loop level. One is that due to its limit due t
Substitution at the one-loop level. One is that due to its limit due to its limit of the one-loop level. It is

Landau pole like in λH4: tends to *increase* as the renomalization scale *Q* increases:

$$
\lambda(Q) \simeq \frac{\lambda(v)}{1 - \frac{3}{4\pi^2} \lambda(v) \ln\left(Q^2/v^2\right)}
$$

Proper physical consideration with quadratic evolution for Higgs boson mass:

Higgs boson observables (mass, self-coupling, EW vacuum density) gets critical values at larger scales than in popular "standard" treatments with scale **~ O(1 TeV)**

-> only at the scales **~ O(10 TeV)** one should expect new physics manifestations:

- new strong EW dynamics
- or/and New Physics beyond Standard Model

```
G.B. Pivovarov, V.K. (2008)
V.K. (2023)
```


New physics within the Standard Model:

- **- new quark-gluon matter states**
- **- new hadron states: pentaquarks, tetraquarks, ...**
- **- new asymptotic regime: BFKL**
- **- new hadron spin properties**
- **- …**

New physics beyond the Standard Model:

- **- new particles and interactions:**
	- **-direct**

-indirect (via virtual contributions): EDM, rare decays, g-2,..

INP KZ (NA62, HIKE)

Indirect searches for New Physics: rare B-meson decays

SM and BSM: $B \rightarrow \mu\mu$

CMS PAS BPH-21-006 (Dec 20, 2022) [Run 2]

Motivations:

 $-$ B \rightarrow $\mu\mu$ is highly suppressed in SM, which can make BSM-induced decays more visible

Analysis:

- Two muons, forming a common displaced vertex
- MVA to suppress backgrounds. Main bkgs:
	- muons from different heavy-flavor mesons
	- muons from B-meson cascade decays
	- $B \to K\pi, B_s \to KK$ (mis-id)

Results:

 $\mathcal{B}(\text{B}_\text{s}^0 \to \mu^+ \mu^-) = \left[4.02^{+0.40}_{-0.38} \left(\text{stat}\right) {}^{+0.28}_{-0.23} \left(\text{syst}\right) {}^{+0.18}_{-0.15} \left(\mathcal{B}\right)\right] \times 10^{-9}$ ${\cal B}(B^0 \to \mu^+ \mu^-) < 1.5 \times 10^{-10}$ at 90% CL

Examples of Feynman diagrams: black – SM particles red/green - BSM

Both agree with the SM and are the most precise to date

Agreement with the SM and α **within available uncertainties**

Sep 2018

LHC: SM precision measurements

CMS Preliminary

LHC: TOTEM experiment (unified CMS)

Total & Elastic Cross-Section Measurements Experiment

Designed to measure protons that emerge intact from the LHC collisions at small angles due to elastic or diffractive physics processes

TOTEM: total and elastic cross sections

Total & Elastic Cross-section Measurements Experiment

CERI

TOTEM experiment: elastic cros section → Odderon?

LHC as photon-photon collider

Precision Proton Spectrometer

PPS is a magnetic spectrometer that uses the LHC magnets and detector stations, to bend protons to measure their trajectories.

Fully integrated into the CMS data-taking system and data reconstruction software.

Total of > 100 fb-1 recorded at 13 TeV with Roman Pots inserted since 2016

- **Large-angle scattering (hard processes):**

QCD in Bjorken limit n GLAPD: V. Gribov & L. Lipatov (71-72); L. Lipatov (74); G. Altarelli & G. Parisi (77); Yu. Dokshitzer (77)

- **Small-angle scattering ("semi-hard" processes):**

QED in Gribov-Regge limit V. Gribov, V. Gorshkov, L. Lipatov & G. Frolov (67-70) H. Cheng & T. Wu (66-70) QCD in Gribov-Regge limit BFKL: V. Fadin, E. Kuraev & L. Lipatov (75-78)

School "High Energy Physics and Accelerator Technology", Almaty, 9-13 October 2023 «Physics at the LHC» Victor Kim I. Balitsky & L. Lipatov (78)

pQCD x-section asymptotics

Bjorken limit (GLAPD): $s \sim Q^2 >> m^2$ $Q^2/s = x \sim 1$ **Large-angle (large-x) scattering**

Gribov-Regge limit (BFKL): $s>>Q^2>>m^2$ $Q^2/s = x \rightarrow 0$ **Small-angle (small-x) scattering**

Δ*y*

Первое сравнение: СГЛП БФКЛ для МН сечений при 2.76 ТэВ A. Egorov & V.K. Phys. Rev. D (2023)

Search for New Physics beyond the Standard Model:

We are ready to admit being approximated:

- laws: conservation of energy, momentum, charge, …
- and even principles: relativity, gauge invariance, …
- and fundamental parameters: space dimension, gravity dimension …

! However: Preserving all description power of the Standard Model in the established domain of its validity

LHC: SUSY searches

LHC: Dark matter search

LHC searches: new resonances, leptoquarks, ...

CERN

 q

 \bar{q}

Z

CERN Information about particle phy

http://public.web.c http://atlas.ch http://cmsinfo.cern.ch/

In Russian:

Научно-популярнь http://elementy

- "Страсти по частицам" ("Part

- Виртуальная академия ФВЭ

School "High Energy Physics and Accelerator Technology", Almaty, 9-13 O

LHC Physics: summary

- **Many parameters of the Standard Model measured at the unprecendent accuracy**
	- **The Standard Model domain of validity is enormously extended**
		- **There few finding anomalies**
	- **- Data taking presently is ~5 % of the planning data at the High-Luminosity LHC**
	- **-> Most probably major news are waiting ahead!**