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Motivation

Investigation of the motion of test particles in the field of 
rotating and deformed objects are relevant to several 
astrophysical phenomena:

 in particular to the observed high frequency, kilohertz 
Quasi Periodic Oscillations (kHz QPOs) in the X-ray 
luminosity from black hole and neutron star sources; 

 it is believed that kHz QPO data may be used to test 
the strong field regime of Einstein’s general relativity, 
and the physics of super-dense matter of which 
neutron stars are made of.



External Hartle-Thorne Solution

•Hartle, J. B., ApJ 150, 1005 (1967)
•Hartle, J. B. & Thorne, K. S., ApJ, 153, 807 (1968)



Limiting cases

 Q=0, J=0, SCHW;

 Q=0, J≠0, neglecting terms ~ J^2, LT;

 Q≠0, J≠0, HT 

or Kerr solution in the Boyer-Lindquist coordinates using the

following substitution and coordinate transformations:

and



Figure 1 - Current 

observations of neutron star 

masses suggest the existence 

of stars with a mass of order 

2 solar masses. Such stars 

require a stiff equation of 

state for the neutron matter 

that makes up most of the 

star to be able to balance 

the attraction of gravity and 

rules out the presence of 

exotic forms of matter 

(pion-kaon condensates, 

quark matter or core solids)

in the core of any neutron 

star because at any mass its 

central density is less than the 

transition densities for these 

exotic phases. 

http://www.learner.org/courses/physics/vis
ual



Figure 2 – Mass-Radius relations of Neutron Stars. 

J.M. Lattimer, M. Prakash / Physics Reports 442 (2007) 109–165



Neutron Star Model

Belvedere, R.; Pugliese, D.; Rueda, J.A.; Ruffini, R; 
Xue, Sh.
“Neutron star equilibrium configurations within a fully 
relativistic theory with strong, weak, electromagnetic, 
and gravitational interactions”
Nuclear Physics A, Volume 883, p. 1-24.  2012

Belvedere, R.; Boshkayev, K.; Rueda, Jorge A.; 
Ruffini, R. 
“Uniformly rotating neutron stars in the global and 
local charge neutrality cases” 
Nuclear Physics A, Volume 921, p. 33-59. 2014 



Belvedere et. al. Nuclear Physics A, Volume 883, p. 1-24. (2012)
Belvedere et. al. Nuclear Physics A, Volume 921, p. 33-59. (2014)

Figure 3 – Mass-Radius relations for Neutron Stars



Constraints on the mass-radius relation given by J. E. Trumper in and the theoretical mass-radius in 
our work the solid line is the upper limit of the surface gravity of XTE J1814-338, the dotted-

dashed curve corresponds to the lower limit to the radius of RX J1856-3754, the dashed line is 
the constraint imposed by the fastest spinning pulsar PSR J1748-2246ad, and the dotted 

curves are the 90% confidence level contours of constant R∞ of the neutron star in the low-
mass X-ray binary X7. Any mass-radius relation should pass through the area delimited by the solid, 
the dashed and the dotted lines and, in addition, it must have a maximum mass larger than the mass 

of PSR J1614-2230, M = 1.97 ± 0.04M⊙.



In X-ray astronomy, quasi-periodic oscillation (QPO)
is the manner in which the X-ray light from an
astronomical object flickers about certain frequencies.
In these situations, the X-rays are emitted near the
inner edge of an accretion disk in which gas swirls onto
a compact object such as a white dwarf, neutron star,
or black hole.

QPOs were first identified in white dwarf systems and 
then in neutron star systems. 

van der Klis et al. 1985, Nature, 316, 225
Middleditch and Priedhorsky 1986, Astrophysical Journal 
306, 230 

QPOs



Figure 4 - Artist view of a LMXB system (http.//astro.virginia.edu)

In the context of X-ray binary systems, which often involve compact
objects like neutron stars and black holes, QPOs are observed in the X-
ray emissions. The frequency of QPOs in these systems typically falls
within the range of approximately 0.1 Hz (hertz) to several hundred hertz.
The exact frequency range can vary from one binary system to another
and may depend on the properties of the compact object and the
accretion disk.



Origin of QPOs: Quasiperiodic oscillations, on the other hand, originate from

different processes within the X-ray binary system. QPOs are often associated

with variations in the X-ray emission and are thought to be linked to dynamic

and complex interactions in the system, including the accretion disk and the

compact object.

Modulation Frequency: The frequency of QPOs represents the characteristic

timescales of the physical processes driving the variations in the X-ray

emissions. These timescales can be significantly longer than the timescales

associated with the production of X-rays. As a result, QPO frequencies are

typically much lower, falling in the range of about 0.1 Hz to several hundred

hertz.



The RPM has been proposed in a series of papers by

Stella and Vietri. It explains the kHz QPOs as a direct

manifestation of modes of relativistic epicyclic motion

of blobs arising at various radii r in the inner parts of

the accretion disk. The model identifies the lower and

upper kHz QPOs with the periastron precession fper
and Keplerian fK frequency.

Stella, L., Vietri, M., 1999, Phys. Rev. Lett. , 82, 17.

The Relativistic Precession Model 
(RPM)



Cosimo Bambi and Sourabh Nampalliwar

An extended analysis of the constraints from GW150914

on a number of gravity theories has been presented in [21].

A more model-independent analysis is reported in [22],

where the authors consider the quasi-normal modes of

a scalar field on a deformed non-Kerr metric. Here the

idea is that often – but not always, depending on the spe-

cific gravity theory – the frequencies of the quasi-normal

modes of a scalar field (which only depend on the back-

ground metric) are not very different from those of the

gravitat ional waves (which instead can only be derived by

the field equat ions of the gravity theory). The finding of

ref. [22] is that the observat ion of GW150914 cannot rule

out large deviat ions from the Kerr metric.

In ref. [23], one of us has discussed the constraining

power of the iron line method by employing the same met-

ric as in ref. [22], in order to compare the gravitat ional

wave and the iron line approaches. While both the stud-

ies in [22] and [23] are only preliminary analyses to get an

idea of the potent ialit ies of the two techniques, one can ar-

rive at some interest ing conclusions. The iron line method

can potent ially be quite compet it ive and provide st ringent

constraints. The reason is that one has to fit the whole

shape of the iron line (actually the whole reflected spec-

t rum, but most of the informat ion on the strong-gravity

field is encoded in the iron line), while in the case of the

gravitat ional waves one has just two numbers (in the case

of GW150914) associated to the frequency of the observed

quasi-normal mode. The weak point of the iron line is the

ast rophysical model, and there is not a common consen-

sus that the iron line can really be used to get precise

measurements of the spacet ime metric.

The aim of this work is to further invest igate the con-

st raining capability of different techniques. We consider

the quasi-periodic oscillat ions (QPOs) of the stellar-mass

black hole in GRO J1655-40 and we const rain possible de-

viat ions from the Kerr metric by employing the same met-

ric as in [22,23]. Interest ingly, current constraints would

be at least comparable, but maybe even bet ter, than the

constraints from gravitat ional waves and iron line. How-

ever, there is a st rong parameter degeneracy. Even if we

assume to have much bet ter measurements in the future,

it is difficult to break the parameter degeneracy without

independent measurements of the mass or of the spin.

Test ing t he K er r met r ic wi t h QPOs. – QPOs are

a common feature in the X-ray power density spect rum

of black-hole binaries [24,25]. There are several types of

QPOs. Low-frequency QPOs are in the range 0.1–30Hz

and are divided into type-A, type-B, and type-C accord-

ing to their propert ies. High-frequencies QPOs are in the

range∼ 100–500Hz and some sources show an upper and

a lower high-frequency QPO with the rat io 3:2. At the

moment , there is no common consensus on the mecha-

nism responsible for these QPOs. However, recent studies

seem to support the relat ivist ic precession model [26,27],

which associates the frequencies of some QPOs to the

three fundamental frequencies of a test -part icle in the

background metric (orbital frequency, radial epicyclic fre-

quency, vert ical epicyclic frequency). The possibilit y of

using QPOs to test the Kerr metric has been already in-

vest igated, see, e.g., [28–31].

Let us consider a generic stat ionary, axisymmetric, and

asymptot ically flat spacet ime. Wewrite the lineelement as

ds2 = gt t dt2 + gr r dr 2 + gθθdθ
2 + 2gtφdtdφ+ gφφdφ2.

The metric coefficients are independent of the t and φ co-

ordinates, leading to the existence of the conserved specific

energy at infinity, E , and the conserved z-component of

the specific angular momentum at infinity, L z . The t- and

φ-component of the 4-velocity of a test -part icle can thus

be writ ten as

ṫ =
Egφφ + L zgtφ

g2
tφ − gt t gφφ

. φ̇ = −
Egtφ + L zgt t

g2
tφ − gt t gφφ

. (1)

From the conservat ion of the rest -mass, gµν ẋµ ẋν = − 1,

we have

gr r ṙ 2 + gθθθ̇
2 = Veff(r, θ, E , L z ), (2)

where the effect ive potent ial Veff is

Veff =
E 2gφφ + 2EL zgtφ + L 2

zgt t

g2
tφ − gt t gφφ

− 1. (3)

Circular orbits in the equatorial plane have ṙ = θ̇ = r̈ = 0.

We write the geodesic equat ions as

d

dλ
(gµν ẋν ) =

1

2
(∂µgνρ) ẋν ẋρ, (4)

and we consider the radial component (namely µ = r )

(∂r gt t ) ṫ2 + 2(∂r gtφ) ṫφ̇+ (∂r gφφ) φ̇2 = 0 . (5)

From eq. (5) we obtain the orbital angular velocity

Ωφ = φ̇/ ṫ

Ωφ =
− ∂r gtφ ± (∂r gtφ)

2
− (∂r gt t ) (∂r gφφ)

∂r gφφ
, (6)

where the sign is + (− ) for corotat ing (counter-rotat ing)

orbits. The orbital frequency is thus νφ = Ωφ/ 2π

From gµν ẋµ ẋν = − 1 with ṙ = θ̇ = 0 we have

ṫ =
1

− gt t − 2gtφΩφ − gφφΩ
2
φ

. (7)

Since − E = gt t ṫ + gtφφ̇ and L z = gtφ ṫ + gφφφ̇, we find

E = −
gt t + gtφΩφ

− gt t − 2gtφΩφ − gφφΩ
2
φ

, (8)

L z =
gtφ + gφφΩφ

− gt t − 2gtφΩφ − gφφΩ
2
φ

. (9)

30006-p2
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(gµν ẋν ) =

1

2
(∂µgνρ) ẋν ẋρ, (4)
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QPOs as a tool for test ing the Kerr metric

The radial and vert ical epicyclic frequencies can be ob-

tained by studying small perturbat ions around circular

equatorial orbits. If δr and δθ are the small displacements

around the mean orbit (i .e., r = r0 + δr and θ = π/ 2+ δθ),

they are governed by the following different ial equat ions:

d2δr

dt2
+ Ω2

r δr = 0,
d2δθ

dt2
+ Ω2

θδθ = 0, (10)

where

Ω2
r = −

1

2gr r ṫ2

∂2Veff

∂ r 2
, Ω2

θ = −
1

2gθθ ṫ2

∂2Veff

∂θ2
. (11)

The radial epicyclic frequency is νr = Ωr / 2π. The vert ical

epicyclic frequency is νθ = Ωθ / 2π.

The periast ron precession frequency νp and the nodal

precession frequency νn can be obtained as

νp = νφ − νr , νn = νφ − νθ . (12)

In the Kerr metric, all these frequencies only depend

on three parameters: the black-hole mass M , the spin

parameter a∗ , and the radius of the orbit r . According

to ref. [26] (see also ref. [27]), the upper high-frequency

QPO νU would correspond to the orbital frequency νφ,

the lower high-frequency QPO νL would correspond to the

periastron precession frequency νp , and the low-frequency

type-C QPO νC would correspond to the nodal precession

frequency νn , namely

νU = νφ , νL = νp , νC = νn . (13)

In the case of the black-hole binary GRO J1655-40, there

is an observat ion in which one detects the three QPOs

above at the same t ime. Assuming the three frequencies

correspond to the same fluid oscillat ion and are therefore

produced at the same radial coordinate, one can solve the

system of three equat ions (the expression of νφ, νp , and νn

in the Kerr metric) to infer the three unknown parameters

(M , a∗ , r ). Since the QPO frequencies can be measured

with a precision of order 1%, one can determine M and

a∗ with a precision of ∼ 1% [26]. Such a precision in the

spin measurement is well above that from the iron line and

gravitat ional waves. Moreover, if the model is correct , the

approach isnot affected by theast rophysical complicat ions

present for the iron line method.

Const raint s on deform at ions. – To compare the

constraining power of the QPO approach with those of

the gravitat ional waves in ref. [22] and of the iron line in

ref. [23], we use the same test -metric. The line element

reads [22]

ds2 = −
N 2(r, θ) − W 2(r, θ) sin2 θ

K 2(r, θ)
dt2

− 2W (r, θ) r sin2 θdtdφ+ K 2(r, θ)r 2 sin2 θdφ2

+ Σ (r, θ)
B 2(r, θ)

N 2(r, θ)
dr 2 + r 2dθ2 , (14)

 0.2
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Fig. 1: (Colour online) Const raints on the spin parameter a∗
and the deformat ion δr / r K er r for the black-hole candidate in

GRO J1655-40 from current observat ions of QPOs within the

relat ivist ic precession model. The red solid line, blue dashed

line, and green dot ted line represent , respect ively, the contour

levels ∆ χ2 = 2, 4, and 9. See the text for more details.

where

N 2(r, θ) =
r 2 − 2M r + a2

r 2
−

η

r 3
,

B 2(r, θ) = 1,

Σ (r, θ) =
r 2 + a2 cos2 θ

r 2
,

K 2(r, θ) =
r 2 + a2 2

− a2 sin2 θ r 2 − 2M r + a2
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and a = J/ M is the rotat ion parameter. This met ric is

obtained by deforming the Kerr met ric by adding a stat ic

deformat ion η such that

M → M +
η
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. (16)

It is convenient to rewrite η as

η = r 0 r 2
0 − 2M r 0 + a2 , (17)

where r0 is the radial coordinate of the event horizon of

the black-hole metric in (16). If we write

r 0 = rK err + δr = M + M 2 − a2 + δr , (18)

we can use δr as the deformat ion parameter to quant ify

possible deviat ions from the Kerr spacet ime. If δr = 0, r0

reduces to the radial posit ion of theevent horizon of a Kerr

black hole. In the general case, δr measures the difference

of the radial coordinate of the event horizon with respect

to that of a Kerr black hole with the same mass and spin.
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QPOs as a tool for test ing the Kerr metric

The radial and vert ical epicyclic frequencies can be ob-

tained by studying small perturbat ions around circular

equatorial orbits. If δr and δθ are the small displacements

around the mean orbit (i.e., r = r0 + δr and θ = π/ 2+ δθ),

they are governed by the following different ial equat ions:

d2δr

dt2
+ Ω2

r δr = 0,
d2δθ

dt2
+ Ω2

θδθ = 0, (10)

where

Ω2
r = −

1

2gr r ṫ2

∂2Veff

∂r 2
, Ω2

θ = −
1

2gθθ ṫ2

∂2Veff

∂θ2
. (11)

The radial epicyclic frequency is νr = Ωr / 2π. Thevert ical

epicyclic frequency is νθ = Ωθ/ 2π.

The periastron precession frequency νp and the nodal

precession frequency νn can be obtained as

νp = νφ − νr , νn = νφ − νθ. (12)

In the Kerr metric, all these frequencies only depend

on three parameters: the black-hole mass M , the spin

parameter a∗ , and the radius of the orbit r . According

to ref. [26] (see also ref. [27]), the upper high-frequency

QPO νU would correspond to the orbital frequency νφ,

the lower high-frequency QPO νL would correspond to the

periastron precession frequency νp , and the low-frequency

type-C QPO νC would correspond to the nodal precession

frequency νn , namely

νU = νφ, νL = νp , νC = νn . (13)

In the case of the black-hole binary GRO J1655-40, there

is an observat ion in which one detects the three QPOs

above at the same time. Assuming the three frequencies

correspond to the same fluid oscillat ion and are therefore

produced at the same radial coordinate, one can solve the

system of three equat ions (theexpression of νφ, νp , and νn

in the Kerr metric) to infer the threeunknown parameters

(M , a∗ , r ). Since the QPO frequencies can be measured

with a precision of order 1%, one can determine M and

a∗ with a precision of ∼ 1% [26]. Such a precision in the

spin measurement iswell abovethat from the iron lineand

gravitat ional waves. Moreover, if the model is correct, the

approach isnot affected by theastrophysical complicat ions

present for the iron line method.

Const raint s on deform at ions. – To compare the

constraining power of the QPO approach with those of

the gravitat ional waves in ref. [22] and of the iron line in

ref. [23], we use the same test-metric. The line element

reads [22]

ds2 = −
N 2(r, θ) − W 2(r, θ) sin2 θ

K 2(r, θ)
dt2

− 2W (r, θ) r sin2 θdtdφ+ K 2(r,θ)r 2 sin2 θdφ2

+ Σ(r, θ)
B 2(r, θ)

N 2(r, θ)
dr 2 + r 2dθ2 , (14)
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Fig. 1: (Colour online) Const raints on the spin parameter a∗
and the deformat ion δr / r K er r for the black-hole candidate in

GRO J1655-40 from current observat ions of QPOs within the

relat ivist ic precession model. The red solid line, blue dashed

line, and green dot ted line represent , respect ively, the contour

levels ∆ χ2 = 2, 4, and 9. See the text for more details.
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Figure 5 – QPOs from LMXBs



Figure 6 – QPOs from GX 5-1



Figure 7 – Contours plots of the best-fit parameters (black dots)
and the associated 1–σ (dark gray) and 2–σ (light gray) con-

fidence regions of the source GX 5-1.



Figure 8 – Contours plots of the best-fit parameters (black dots)
and the associated 1–σ (dark gray) and 2–σ (light gray) con-

fidence regions of the source Cir X1.





Figure 9 - The mass in solar masses (M/M⊙), the dimensionless angular 

momentum j and quadrupole moment q as a function of the central 

density of a maximally rotating neutron star. Solid curves indicate GCN 

and dashed curves indicate LCN cases. 



Conclusion and prospects

• On the basis of the RPM using the QPOs data of GX 5-1 and Cir

X1, we inferred the mass, angular momentum and quadrupole

moment of the source with error bars (from observation).

• From the neutron star model of Belvedere et. al. (2012, 2014)

we derived the rest parameters of the source such as radius,

angular velocity (frequency) etc. of the neutron star (from

theory).

• Different models for different sources.

• arXiv:2303.03248, arXiv:2212.10186.

Work in progress…
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