

Unstable nuclei research

Meet ISOLDE trailer: https://videos.cern.ch/record/2285037

Magdalena Kowalska CERN, PH-Dept. and UNIGE

kowalska@cern.ch

on behalf of the CERN ISOLDE team <u>www.cern.ch/isolde</u>

WHY:

All forces acting in (unstable) nuclei

3

Coulomb force repels protons

- Strong interaction ("nuclear force") causes binding which is stronger for proton-neutron (pn) systems than pp- or nn-systems
- Neutrons alone form no bound states (exception: neutron stars (gravitation!)

Weak interaction causes β-decay

Nuclei and QCD

- Different energy scales
- In nuclei: non-perturbative QCD, so no easy way of calculating
- Have to rely on nuclear models (shell model, mean-field approaches)
- Recent progress: lattice QCD

Chart of nuclei

Chart of nuclei

Properties of radio-nuclides

- Different neutron-to-proton ratio than stable nuclei leads to:
 - > New structure properties
 - New decay modes
- => Nuclear models have problems predicting and even explaining the observations

Example - halo nucleus ¹¹Li:

- Extended neutron wave functions make ¹¹Li the size of ²⁰⁸Pb
- > When taking away 1 neutron, the other is not bound any more (10Li is not bound)

Research topics using unstable nuclei

WHERE

Radioactive Ion Beam facilities

Existing and in preparation

ISOLDE at CERN

Isotope Separator OnLine DEvice

First ISOL facility worldwide!

Produces Radioactive Ion Beams (RIBs)
Approved by the CERN council in 1964

- 1st used 600 MeV protons from SC
- Then used 1.0 GeV (later 1.4 GeV) protons from the PSB

A small facility with a big impact!
 0.1% of CERN budget
 7% of CERN scientists
 50% of CERN proton pulses
 80% of CERN protons

http://timeline.web.cern.ch/timelines/ISOLDE

ISOLDE elements

Isotope production via reactions of light beam with thick and heavy target

Production – ionization – separation

ISOLDE experimental setups

Laser spectroscopy and nuclear properties

Lasers allow studying ground-state (and isomeric) properties of nuclei, based on:

Atomic **hyperfine structure (HFS)** (interaction of nuclear and atomic spins)

- HFS details depend on:
 - Spin -> orbit of last proton&neutron
 - Magnetic dipole moment -> orbits occupied by protons&neutrons
 - Electric quadrupole moment -> deformations

Yordanov et al, Phys. Rev. Lett., 110, 172503 (2013)

> Setups: COLLAPS CRIS MIRACLS VITO

14

Isotope shifts (IS) in atomic transitions (change in mass and size of different isotopes of the same chemical element)

- IS between 2 isotopes depends on:
 - difference in their masses & charge radii

Penning-trap mass spectrometry

Position-sensitive

Penning trap

- superposition of static magnetic and electric field \succ
- Ion manipulation with radiofrequencies \geq

Decay spectroscopy

- Different detectors to sensitive to emitted:
 - > Alpha particles
 - Beta particles
 - Gamma rays
 - Protons or neutrons
- Isolde Decay Station
- Polarised beams at VITO setup

Synergies: lasers, traps, decays

Coulomb excitation

Observables: Transition energies and intensities => Find new excited levels and study deformations

Nuclear astrophysics at HIE-ISOLDE

Scalar currents with ³²Ar

Radioactive molecules & Beyond SM

Beta-NMR in organic samples

Phys. Rev. X 10, 041061 (2020)

Applications in biology (metal ion interactions) And nuclear physics: distribution of magnetisation

Material science

^{229m}Th: towards a nuclear clock

New medical isotopes

After U. Koster, C Müller et al. 2012 J. Nucl. Med. 53, 1951

Summary

- Research topics with radionuclides:
 - Nuclear and atomic physics
 - > Astrophysics
 - Fundamental studies
 - Applications
- Studied properties:
 - mass, radius, spin, moments, half-life, decay pattern, transition probabilities
- Examples of ISOLDE experimental techniques
 - Laser spectroscopy
 - Ion traps
 - Decay spectroscopy
 - Coulomb excitation
 - Nucleon-transfer reactions

Applications

- Material science
- Life sciences: bio- and medical