

Muon Collider: MDI – Machine-Detector and Beam Induced Background

D. Calzolari (CERN – SY/STI/BMI)

Colliders of Tomorrow: Muon Collider Beam Background

10 Aug 2023

Outline

- Muon collider (MC):
 - Concept and motivations
 - Advantages and radiation challenges
- Machine-Detector Interface (MDI):
 - Geometry of the interaction region
 - Conical nozzle to mitigate the background: nozzle
 - Workflow in IMCC
 - Main aspects under study
- Beam-Induced Background (BIB) from μ-decay at different energies
 - Total number of BIB particles for different machines
 - Effect of the lattice at \sqrt{s} = 10 TeV
 - Nozzle effect
- Incoherent pair production background
 - Secondary source of background important at high energy
- Halo losses: BIB first assessment
- Long term detector damage
- **Forward muons:** nozzle interference for high η
- Conclusions

Muon collider: concept and motivations

Among various particles accelerated in colliders, muons have already been under consideration for a long time [1]. Very promising results were achieved in the contest of the MAP collaboration [2-3]. The following work is in the context and on behalf of the International Muon Collider Collaboration (IMCC).

Why?

- A multi-TeV muon collider could investigate Higgs properties with an unprecedented precision. [2]
- With \sqrt{s} = 10 TeV we can explore **new** physics at high energies. [2]

With a muon collider the **luminosity per beam power** increases with the collider energy!

Muon collider: advantages

Synchrotron radiation*

 $m_u = 105.7 \text{ MeV/c}^2$

 Synchrotron radiation (SR) is not a limiting factor for muon circular colliders.

Muons emit $(m_{\mu}/m_e)^4 = 1.6 \cdot 10^9$ less synchrotron radiation than electrons

*of the primary muon beam

Lepton collisions

- Muons are elementary particles, and all the energy is involved in the collision. Instead, in protons, the energy is shared among constituents.
- Same performance of proton colliders, but with much lower center of mass energy! [2]

Energies at which proton/μ-colliders have similar performances

Assuming comparable Feynman amplitudes for muon and proton production processes

Proton production enhanced due to QCD production (factor of 10)

Previous studies in MAP

- The renewed efforts in the **International Muon Collider Collaboration (IMCC)** benefit from the previous work done in the **Muon Accelerator Program (MAP)**.
- Extensive work has been done in various field, among which:
 - Design of a muon production target handling ~MW proton sources
 - Exploration studies in the muon cooling
 - Magnet and shielding design to protect coils from decay products
 - Interaction region design to mitigate the background to the detectors
- To mitigate the BIB, particular attention has been devolved to the nozzles. This shielding equipment has been carefully optimized up to √s=1.5 TeV colliders

Muon collider: radiation challenges

• Muons are unstable particles, with a rest lifetime of τ = 2.197 μ s. They decay spontaneously into electron and positrons (depending on the muon original charge), which are the main contributors to the secondary radiation field.

Superconducting magnets

Secondary electrons impact on the beam chamber. Their energy induce **heat** and long term radiation **damage** in the **superconducting coils.**

MDI

The secondary field is a source of **background** to the experiment and induce radiation **damage** to the **detectors**.

Neutrino radiation

High energy **neutrinos** from the muon decay interact with the rock delivering **dose** to the **environment**.

Interaction region: MDI

- MDI is a **difficult challenge** for the muon collider. First studies were done by the MAP collaboration (energies up to 6 TeV). So far, IMCC focused on studies for energies up to 10 TeV.
- Main objectives:
 - Study the beam-induced background (BIB) and identify mitigation strategies for the 3 TeV and 10(+) TeV collider options.
 - Develop a credible interaction region (IR) design that yields background levels compatible with detector operation (1. enabling physics performance reach, 2. reducing radiation damage to acceptable levels)

MDI Working Group:

- Formed last year in course of the Muon Collider Community meetings
- Shall bring together expertise from different areas (lattice design, particle-matter interactions, detectors, magnets etc.)
- Meetings every last Friday of a month (<u>Indico</u> <u>event category</u>)

Geometry of the MDI

Tentative target parameters Scaled from MAP parameters

Comparison: CLIC at 3 TeV: 28 MW

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
N	1012	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14

MDI: lattices used for background studies

- $\sqrt{s} = 3$ TeV IR lattice taken from US-MAP (Y. Alexahin et al 2018 JINST 13 P11002):
 - L* = 6 m
 - Quadruplet final focus with combined function magnets (ß* = 5 mm)
 - Maximum field at inner bore is 12 T
- \sqrt{s} = 10 TeV IR lattice was developed from scratch within IMCC:
 - $L^* = 6 \text{ m}$ as baseline
 - Triplet layout (ß* = 1.5 mm), optionally with and without dipolar component
 - Max field at inner bore is 20 T

MDI: geometry of a 10 TeV collider

MDI: nozzle geometry

- Our implementation of the nozzle follows the original design from MAP collaboration
- The scope of the solid tungsten layer is to have a dense material to stop electromagnetic cascades
- The **boron polyethylene** layer acts as moderator (the hydrogen atoms), while the boron content is **capturing** the thermalized **neutrons**.

Workflow in the IMCC

Example of a LB application: LHC IR7

2. FLUKA geometry model

The magnet optics is computed via dedicated codes (e.g. MAD-X).

Via LineBuilder (LB), complex geometries are assembled in a FLUKA input file

The output is a twiss file, containing the machine elements in a sequence

1. Lattice design

3. BIB simulation

With the built geometry, a FLUKA simulation is run.

The position and momentum of the decay muons are sampled from the matched phase-space

Iteration with lattice design experts to mitigate the BIB

BIB data to detector experts

Machine-Detector

Interface: MDI

CERN STI/BMI is currently responsible for the geometry built at \sqrt{s} = 3 and 10 TeV

MDI: main aspects under study

Background and radiation damage in detector*

Develop a credible interaction region (IR) design that yields background levels compatible with detector operation

BIB data handling in collaboration with detector simulation

Establish a coherent framework to share the simulated background for the signal reconstruction

MDI design for forward muon detection

Incorporate forward muon detection needs in the design choices.

^{*}Most relevant point, and this presentation will focus mostly on this

Status of the background studies for the √s = 3 TeV collider

- $\sqrt{s} = 3$ TeV BIB studies with FLUKA:
 - The procedure used to verify the beaminduced background at = 1.5 TeV (F. Collamati et al 2021 JINST 16 P11009) is being used to study background at = 3 TeV
 - Nozzle inspired by 1.5 TeV MAP design (N. Mokhov)
 - Particle distributions were used for first detector studies
 - Dose/neutron fluence maps for detector
 - Renewed effort in assessing the background reported in L. Castelli presentation during 2023 IMCC annual meeting

See presentation of D. Lucchesi in the IMCC Accelerator meeting Nov 14, 2022

Status of the background studies for the √s = 10 TeV collider

- Simulation model (FLUKA):
 - Started with a nozzle inspired by 1.5 TeV MAP design (N. Mokhov)
 - Conical W liners in magnets which follow 5σ beam envelope
 - Muon decay sampling → fully matched beam phase space distr.
- Topics addressed so far for the 10 TeV collider:
 - Is the decay-induced background worse than in a 3 TeV collider?
 - Impact of lattice design choices on the decay background
 - Assessment of the nozzle optimization potential for 10 TeV
 - Assessment of the contribution of incoherent electron-positron pair production
 - Estimate of the cumulative radiation damage in the detector
 - First study of forward muons from IP (muon tagging)

See next

slides

Results with MAP-like nozzle yield similar number of particles entering detector for 3 TeV and 10 TeV:

Monte Carlo simulator	FLUKA	FLUKA
Beam energy [GeV]	1500	5000
μ decay length [m]	$93.5 \cdot 10^{5}$	$311.7 \cdot 10^{5}$
μ decay/m/bunch	$2.1 \cdot 10^{5}$	$0.64 \cdot 10^{5}$
Photons $(E_{\gamma} > 0.1 \text{ MeV})$	$70 \cdot 10^{6}$	$107 \cdot 10^{6}$
Neutrons $(E_n > 1 \text{ MeV})$	$91 \cdot 10^{6}$	$101 \cdot 10^{6}$
Electrons & positrons ($E_{e^{\pm}} > 0.1 \text{ MeV}$)	$1.1 \cdot 10^{6}$	$0.92 \cdot 10^{6}$
Charged hadroms ($E_{h^{\pm}} > 0.1 \text{ MeV}$)	$0.020 \cdot 10^{6}$	$0.044 \cdot 10^{6}$
Muons $(E_{\mu^{\pm}} > 0.1 \text{ MeV})$	$0.0033 \cdot 10^{6}$	$0.0048 \cdot 10^{6}$

From Snowmass white paper.

μ decay: sampling procedure

- For an accurate description, I propose to sample the muon decays position and momentum from a matched phase-space distribution.
- Once the position and momentum of the muons are known, the muon decay is forced.
- Results are naturally expressed per muon decay.
- Muons do not need to be tracked in the machine (+ save CPU time & + no tracking inaccuracy)

3. Sample muon

Given the muon in the ideal trajectory, sample the muon position and momentum from the linear optic corrections (appendix 1).

μ decay: e^{+/-} impact on aperture

μ decay: original lattice

- The original preliminary lattice consisted of a L* = 6m, followed by the final focusing scheme. This consisted of a straight section containing quadrupoles up to ~35 m from the IP.
- The contribution coming from the bent section is proven negligible

μ decay @ \sqrt{s} = 10 TeV: particle spectra

Considering the starting simplified lattice, the BIB particle multiplicity has been evaluated.

			Opuateu:
Collider energy	1.5 TeV	3 TeV	10 TeV
Photons	7.1E+7	9.6E+7	9.6E+7
Neutron	4.7E+7	5.8E+7	9.2E+7
e+/e-	7.1E+5	9.3E+5	8.3E+5
Ch. hadrons	1.7E+4	2.0E+4	3.0E+4
Muons	3.1E+3	3.3E+3	2.9E+3

Data from: https://arxiv.org/pdf/2209.01318.pdf

Undated

μ decay @ √s = 10 TeV: particle origin

 Considering the starting simplified lattice, the BIB particle multiplicity has been evaluated.

			Updated!
Collider energy	1.5 TeV	3 TeV	10 TeV
Photons	7.1E+7	9.6E+7	9.6E+7
Neutron	4.7E+7	5.8E+7	9.2E+7
e+/e-	7.1E+5	9.3E+5	8.3E+5
Ch. hadrons	1.7E+4	2.0E+4	3.0E+4
Muons	3.1E+3	3.3E+3	2.9E+3

Data from:

https://arxiv.org/pdf/2209.01318.pdf

Dashed line for particles arriving in the time window of [-5, 15] ns

µ decay @ √s = 10 TeV: different beams contribution

- Most of the 10 TeV simulations are conducted with a μ^+ beam. To confirm that the contribution from the opposite beam is the same, a comparison has been done.
- The simulations (comparing also energy spectra) do not show any systematic difference!

Dashed line for particles arriving in the time window of [-5, 15] ns

Ratio of BIB from different beams

μ decay @ \sqrt{s} = 10 TeV: lattice design choices

- Can the decay-induced background be reduced by adjusting the lattice design?
- Two key aspects were investigated:
 - Dipolar component in the final focus triplet (combined function magnets or separate dipoles)
 - Distance between IP and final focus magnets (L*)

Lattices with and without dipolar component (L*=6m):

K. Skoufaris

μ decay @ \sqrt{s} = 10 TeV: dipolar component

- The presence of a dipolar component changes the loss distribution of decay-e⁻/e⁺ on the aperture
- Some reduction of the contribution from distant decays
- However, the overall benefits are limited

Only quadrupoles

MDI meeting #5, 29/05/2022

μ decay @ \sqrt{s} = 10 TeV: different L*

- The 10 TeV MDI studies show that μ-decays between IP and first quad contribute little to the BIB – is it beneficial to increase L*?
- With L*= 10 m, some reduction of the particle fluence is found around the IP compared to L*= 6 m
- Nevertheless, the gain is not large enough to justify the increase of L*

K. Skoufaris

μ decay @ \sqrt{s} = 10 TeV: new lattice (v.06)

- For a realistic machine, the final focusing schemes studied so far do not represent a satisfactory scenario.
 - A new lattice was provided by K. Skoufaris containing a very long straight section before the nozzle
 - Electrons produced in the drift section are not overbent or deflected by strong quadrupoles nor dipoles!

μ decay @ \sqrt{s} = 10 TeV: new lattice (v.06)

- For a realistic machine, the final focusing schemes studied so far do not represent a satisfactory scenario.
 - A new lattice was provided by K. Skoufaris containing a very long straight section before the nozzle
 - Electrons produced in the drift section are not overbent or deflected by strong quadrupoles nor dipoles!

-6000

-4000

-8000

-12000 -10000

Dashed line: with time cut

Electrons
Positrons

µ decay @ √s = 10 TeV: new lattice (v.06) time distribution

Part of the BIB arrives with delayed times in comparison with the bunch crossing. Applying a time cut
offers the possibility to strongly reduce this background.

μ decay @ \sqrt{s} = 10 TeV: nozzle optimization (1)

- So far, a proof of concept for the nozzle optimization has been conducted.
- The next step will be to start from scratches and perform a nozzle optimization for the 10 TeV machine, having in mind the detector performance
- Room for improvement!

MDI meeting #6, 29/06/2022

μ decay @ \sqrt{s} = 10 TeV: nozzle optimization (2)

- So far, a proof of concept for the nozzle optimization has been conducted.
- The next step will be to start from scratches and perform a nozzle optimization for the 10 TeV machine, having in mind the detector performance

the detector performance

Room for improvement!

Starting from 2.5 deg, we modify this angle.

Incoherent pair production: phenomenon

- At very high beam energies, beam-beam effects are not negligible. The most important phenomenon is due to the incoherent beam-beam pair production μ+μ-→μ+μ-e+e-.
 - The incoherent pair production e⁺/e⁻ are provided by D. Schulte and are obtained by a **Guinea-Pig simulation**
- The total number of crossing is much lower than the muon decay case.
- The produced electrons are energetic and they impact directly on the detectors, since are generated in the IP, hence they might be dangerous despite the low total number.

Incoherent pair production: space distribution

- The trajectory of the pairs is curved by the solenoidal 5 T magnetic field.
- Most of the particles enter in the detector area as photons produced in the nozzle

Incoherent pair production: spectra

- The total BIB multiplicity is much smaller than the one coming from the muon decay
- However, the spectrum is significantly harder, and the BIB is in time with the signal

Halo losses: spectra

- The halo losses gives a significantly different contribution to the BIB: the particles are generated close to the IP due to the muon interaction with the nozzle.
- As a preliminary simulation, we considered a muon beam going in the magnet at 0 degrees with the z axis

 In terms of n and γ, the muon decay produces ~10⁸ particle per bunch crossing. To have the same contribution here, we would need to lose ~2E5 muons in the final focusing.

How to read BIB data: FLUKA output

How to read BIB data: data format

Question: are these variables descriptive (and sufficient) to understand the BIB

sources? Suggestions are well accepted

variables for the detector studies?

//y/z p_x/p_y/p_z Time at

What is a "parent"? Are there any insightful

Id particle	ld parent	Energy	x/y/z	$p_x/p_y/p_z$	Time of crossing	x/y/z sampling	x/y/z parent	p _x /p _y /p _z parent	Time at generation
Integer	Integer	Double	Double (x 3)	Double (x 3)	Double	Double (x 3)	Double (x 3)	Double (x 3)	Double

00000000: 0700 0000 0000 0000 fbb2 9397 b9db 353f 00000010: 0a7e 778f 357b f4bf 72da e775 b03d 0040 000000020: a467 dd2a 1c5c 27c0 0f5f a698 d8de e8bf Little endian 930: b001 93bf 6ed9 d83f d0c7 8226 ffb0 dfbf 000000050: e06b 1731 2ea7 d03f 5a23 1df7 850b 01c0

Example: a photon (particle id = 7), with energy 0.710383952 GeV, is crossing in the detector area in (-1.91, 2.00, -2.61)

How to read BIB data: data organization

 Each simulation is run in parallel in many cycles. To estimate the uncertainty, I do a batch statistical analysis.

Long term detector damage: FLUKA detector implementation

- The first detector FLUKA implementation follows the CLIC models.
- In the context of BIB studies, the detector damage is studied.
- The only source of detector damage considered are the secondary particles coming from the muon

Long term detector damage: √s = 10 TeV total ionizing dose

- As operational lifetime, we assume to work for 5 years. Each year, we assume to work for 1.2E7 seconds (139) days). In comparison with the nominal luminosity and the target integrated luminosity, we have a 20% safety factor.
- In the plots, the effects of one beam (left to right) are shown

Long term detector damage: √s = 10 TeV total displacement damage

- As operational lifetime, we assume to work for 5 years. Each year, we assume to work for 1.2E7 seconds (139 days). In comparison with the nominal luminosity and the target integrated luminosity, we have a 20% safety factor.
- In the plots, the effects of one beam (left to right) are shown

Forward muon detection: introduction

- During the annual meeting, Maximilian Ruhdorfer clearly shown the physics interest in tagging forward directed muons (this talk). 'Coverage of very forward muons is crucial'.
- For a full coverage, η above 6. At η = 2.44 (ϑ = 10°), all the signal is removed.
- The muon collider requires thick nozzles to mitigate the enormous BIB to the detectors generated by the decaying beams.
- The a part of the forward muons crosses the shielding and machine components before it can be detected.
- In this study, I simulated the **propagation of very forward muons** in the machine. We want to understand *if*, *how* and *where* these muons can be detected.
- All results here are preliminary

Forward muon detection: first test case

 Matthew Forslund generated and Massimo Casarsa provided us a muon list containing both μ⁺ and μ⁻ in case of a VBF possible process.

• Assuming isotropy in the ϕ angle, I made some simulation for the forward muons emitted at various energies and angles in the interaction point.

$$\eta \equiv -\ln\!\left[an\!\left(rac{ heta}{2}
ight)
ight]$$

Within a large pseudo-rapidity range, muons will cross a large portion of the tungsten nozzle. They lose energy in it!

 The energy loss distribution depends on the interaction mechanism (energy straggling). The energy loss follows the Landau distribution.

$$p(x;\mu,c) = rac{1}{\pi c} \int_0^\infty e^{-t} \cos\!\left(t\left(rac{x-\mu}{c}
ight) + rac{2t}{\pi} \log\!\left(rac{t}{c}
ight)
ight) dt$$

- As expected, the energy loss distibution is similar for all the η values.
- Behind the nozzle there are machine elements ($\eta > 3.7$) and further lateral shielding ($\eta < 3.7$) \rightarrow potentially higher energy straggling
- Forward muons were not a primary MDI requirement. We can include them in future shielding design.

 When the pseudorapidity is large enough (~6.5) the muons do not touch the tungsten and go directly in the beam pipe. There, they cross the magnet and leave the line

Conclusions

- **BIB from muon decay** has been assessed with various configuration:
 - A dipolar component offers only a slight beneficial contribution to the BIB mitigation
 - The new lattice with a long drift increases the BIB multiplicity of a factor 2
- The negative muon beam and the positive one have the same effect for what concerns the BIB from muon decay
- Incoherent pair production is a non negligible background at high energies. This should be included with the BIB from muon decay in the detector design
- The halo losses could pose a threat only if a large fraction of the beam is lost at the final focusing. A tracking study could be necessary to better assess this contribution
- The nozzle still remains the most important element in the MDI. A systematic optimization is necessary, once an agreement is reached for the final focusing lattice
- The long term radiation damage has been assessed. From preliminary simulation, the damage is comparable with the Hi-Lumi LHC upgrade
- Tracking and measuring forward muons can be challenging. Nevertheless, we should keep these in thought during the MDI design process

References

- [1] R. Palmer et al, Muon collider design. (https://doi.org/10.1016/0920-5632(96)00417-3)
- [2] Franceschini, R. and Greco, M., 2021. Higgs and BSM physics at the future muon collider. Symmetry, 13(5), p.851.
- [2] J. P. Delahaye, Muon Colliders (arXiv:1901.06150)
- [4] Berg, A Cost-Effective Design for a Neutrino Factory (doi: 10.1103/PhysRevSTAB.9.011001)
- [5] N. V. Mokhov, (2009, November). Muon Collider Detector Backgrounds and Machine Detector Interface.
- [6] V. Di Benedetto et al., "A study of muon collider background rejection criteria in silicon vertex and tracker detectors (arXiv:1807.00074)
- [7] N. V. Mokhov, Muon Collider interaction region and machine-detector interface design. (arXiv:1202.3979)
- [8] N. V. Mokhov, Detector Background at Muon Colliders. (arXiv:1204.6721)
- [9] Collamati, F. et al, Advanced assessment of beam-induced background at a muon collider. (arXiv:2105.09116)
- [10] Strong field processes in beam-beam interactions at the Compact Linear Collider, J. Esberg et al., doi: 10.1103/PhysRevSTAB.17.051003
- [11] D. Neuffer et al, A muon collider as a Higgs factory (arXiv:1502.02042)
- [12] N. V. Mokhov, Reducing backgrounds in the higgs factory muon collider detector (arXiv:1409.1939)
- [13] https://agenda.infn.it/event/26948/contributions/136379/attachments/81308/106480/IPAC Curatolo.pdf
- [14] https://indico.cern.ch/event/1134938/contributions/4765158/attachments/2402421/4117427/BIB_CCuratolo_4mar2022.pdf
- [15] https://indico.fnal.gov/event/51315/contributions/225846/attachments/148314/190521/casarsa_BIBcomparison.pdf

Particle sampling in linear optics

- Sample the s-coordinate (curvilinear arc length) uniformly across the particle trajectory.
- Sample the beam energy from a gaussian distribution
- Sample from the matched phase-space the correction to the ideal trajectory (this formula is applied performing the Cholensky matrix decomposition for the beam matrix)

$$\begin{cases} \Delta_x = \operatorname{Rand}_x \cdot \sqrt{\epsilon_x \beta_x} \\ \Delta_{x'} = (\operatorname{Rand}_{x'} - \operatorname{Rand}_x \cdot \alpha_x) \sqrt{\epsilon_x / \beta_x} \end{cases}$$

$$\begin{cases} \Delta_x = D_x \delta_p \\ \Delta_{x'} = D_{x'} \delta_p \end{cases}$$

10 TeV muon collider: position of crossing

10 TeV muon collider: new and original lattice

