The next muon g-2 experiment to 0.25 ppm

Yannis K. Semertzidis
Brookhaven National Laboratory

• We made a presentation at P5 (27 March 2006) and expect a report from P5 ~summer 2006

• Physics case made (W. Marciano @ P5)
• E969 goal of 0.25 ppm achievable (L. Roberts @ P5)
The Muon Storage Ring:
$B \approx 1.45\,T, P_{\mu} \approx 3\,\text{GeV/c}$
$g - 2$ for the muon

$$a_\mu = \frac{\alpha}{2\pi} \approx \frac{1}{800}$$
Status and goal

(W. Marciano, P5)

\[
a_\mu = \frac{g_\mu - Z}{2} = \frac{\alpha}{\pi} + \ldots
\]

\[
E821 \rightarrow a_\mu^{\text{exp}} = 116592080(63) \times 10^{-11}
\]

Standard Model \rightarrow a_\mu^{\text{SM}} = 116591812(59)_{VP}(35)_{LBL}(2)_{EW} \times 10^{-11}

\[
\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 268(59)_{VP}(35)_{LBL}(2)_{EW}^\text{exp} \times 10^{-11}
\]

\[
(69)_{(93)}
\]

2.9 sigma Discrepancy!

Future goal $> 5\sigma$.
Theory

(W. Marciano, P5)

Use $e^+e^- \rightarrow \text{Hadrons Cross Section} + \text{Dispersion Relation}$

$e^+e^- \rightarrow \pi^+\pi^- (\pi)$ Dominates $\sim 72\%$ (ρ dominated)

Alternatives:

$\Gamma (\pi \rightarrow \pi^- \pi^0) + \text{Isospin Corrections}$

or Pure Lattice Calculation (T. Blum)

For LBL: Pion Pole + Short-Distance

or Lattice (Some Day)

$q^{\mu \text{LBL}} \rightarrow +120 (35) \times 10^{-11}$ Conservative Error

Interesting History

Now Stable
New Physics Implications

(W. Marciano, P5)

2) New Physics Implications:

i) SUSY Loops:

\[Q_{\mu}^{\text{susy}} = (\text{sign } \mu = +) \times 130 \times 10^{-11} \tan \beta \left(\frac{100 \text{ GeV}}{m_{\text{susy}}} \right)^2 \]

\[\Delta Q_{\mu} = 268(93) \times 10^{-11} \]

Natural Explanation!

\[\text{sign } \mu = + \ (\text{Eliminates } \frac{1}{2} \text{ Model/s}) \]

\[m_{\text{susy}} \approx 70 \sqrt{\tan \beta} \text{ GeV} = 100 \sim 500 \text{ GeV} \]

Some day \[\tan \beta = 2 \left(\frac{m_{\text{susy}}}{100 \text{ GeV}} \right)^2 \] *Best Determination*
Future Theory and Experiment

(W. Marciano, P5)
Motivation

(W. Marciano, P5)

Conclusions: E969 Goal $\pm 30 \times 10^{-3}$ Well Motivated

γ Sc Discovery Potential

(Even if γ data moves up, down somewhat)

Complements LHC Discoveries $\tan \beta_{susy}$

Exp. γ Theory Unc. Well Matched

Over Next Few Years

E969 - Must Do Experiment
The (g-2) discrepancy is consistent with other constraints on the SUSY LSP being the dark matter candidate.

Present Δ

CMSSM calculation Following Ellis, Olive, Santoso, Spanos, from K. Olive
Future Comparison:

$\sigma_{E969} = 0.25 \text{ ppm; } \Delta_{E969} = \Delta_{\text{now}}$

Present Δ, future error $\tan \beta = 10$, $\mu > 0$
Future Comparison:

\[\sigma_{E969} = 0.25 \text{ ppm}; \Delta_{E969} = 0 \]

\[\Delta = 0 \text{ Future error} \]

\[\tan \beta = 10, \mu > 0 \]

\[m_h = 114 \text{ GeV} \]

\[m_{\chi^\pm} = 104 \text{ GeV} \]

\[g-2 \]

\[1\sigma \]

\[2\sigma \]
BNL E969 Collaboration

R.M. Carey, I. Logashenko, K.R. Lynch, J.P. Miller, B.L. Roberts
Boston University
G. Bunce, W. Meng, W. Morse, P. Pile, Y.K. Semertzidis
Brookhaven National Laboratory
D. Grigoriev, B.I. Khazin, S.I. Redin, Y. M. Shatunov, E. Solodov
Budker Institute of Nuclear Physics
F.E. Gray, B. Lauss, E.P. Sichtermann
UC Berkeley and LBL
Y. Orlov – Cornell University
University of Illinois at Urbana-Champaign
K.L. Giovanetti – James Madison University
K.P. Jungmann, C.J.G. Onderwater – KVI Groningen
T.P. Gorringe, W. Korsch U. Kentucky
P. Cushman – University of Minnesota
M. Aoki, Y. Arimoto, Y. Kuno, A. Sato, K. Yamada
Osaka University
S. Dhawan, F.J.M. Farley – Yale University
Experimental Technique

- Muon polarization
- Muon storage ring
- Injection & kicking
- Focus by Electric Quadrupoles
- 24 electron calorimeters

\[\vec{\omega}_a = -\frac{e}{m} a_\mu \vec{B} \]
Space limitations prevent matching the inflector exit to the storage aperture

(L. Roberts, P5)
The E821 inflector magnet had closed ends which scattered away half the beam.

Length = 1.7 m; Central field = 1.45T

Open end prototype, built and tested

→ X2 Increase in Beam
E821 used a “forward” decay beam, with p_π 1.7% above p_{magic} to provide a separation at K_3/K_4.

Our models show that by quadrupling the quads and going further above p_{magic}, the flash is decreased and the muon flux will grow by approximately 2-3.

We base our request on a modified version of this proven concept.
New **segmented detectors** of tungsten / scintillating- fiber ribbons to deal with pile-up

- Prototype work and simulations @ UIUC
- Calibration method reasonable
- Bases will be gated.
- New custom electronics and DAQ
4 Billion e^+ with $E > 2$ GeV

\[
dN / dt = N_0 e^{-\frac{t}{\tau}} \left[1 + A \cos (\omega_a t + \phi_a) \right]
\]
E969 needs **5 times** the muon flux that E821 stored.

- Open inflector \(\times 2 \)
- Quadruple the quadrupoles \(\times 2 - 3 \)
- Beam increase design factor \(\times 4 - 6 \)
E969 Baseline – 0.25 ppm total error

• **Systematic error goals:**
 – for ω_a: 0.1 ppm
 – for ω_p: 0.1 ppm

• **Statistical error goal:**
 – for ω_a: 0.2 ppm

• **Total Error Goal:**
 – a_μ: 0.25 ppm
Field systematic uncertainties, ordered by importance

<table>
<thead>
<tr>
<th>Source</th>
<th>E821 (ppm)</th>
<th>E969 (ppm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration of trolley probe</td>
<td>0.09</td>
<td>0.06</td>
<td>Improved shimming in the calibration region; improved registration of trolley location in ring</td>
</tr>
<tr>
<td>Interpolation with fixed probes</td>
<td>0.07</td>
<td>0.06</td>
<td>Repairs and retuning of a number of probes to improve the sampling of the ring field</td>
</tr>
<tr>
<td>Absolute calibration</td>
<td>0.05</td>
<td>0.05</td>
<td>Could improve using a 3He based probe</td>
</tr>
<tr>
<td>Trolley measurements of B0</td>
<td>0.05</td>
<td>0.02</td>
<td>More frequent trolley runs; mechanical maintenance of trolley drive and garage; Extensive measurements of trolley NMR probe active volumes</td>
</tr>
<tr>
<td>Muon distribution</td>
<td>0.03</td>
<td>0.02</td>
<td>Simulations of storage ring; improved shimming</td>
</tr>
<tr>
<td>“Other”</td>
<td>0.10</td>
<td>0.05</td>
<td>$in situ$ measurement of eddy currents Improved shimming Modifications to trolley and PS</td>
</tr>
<tr>
<td>Total</td>
<td>0.17</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>
Precession frequency systematic uncertainties, ordered by importance

<table>
<thead>
<tr>
<th>Source</th>
<th>E821 (ppm)</th>
<th>E969 (ppm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain stability</td>
<td>0.12</td>
<td>0.03</td>
<td>Full WFD samples recorded; stability of laser calibration with local reference detectors; single-phase WFDs</td>
</tr>
<tr>
<td>Lost muons</td>
<td>0.09</td>
<td>0.04</td>
<td>New scraping scheme; improved kick</td>
</tr>
<tr>
<td>Pileup: T method Q method (not applicable)</td>
<td>0.08</td>
<td>0.07</td>
<td>Recording all samples, no threshold, will eliminate ambiguity from low-energy pulses</td>
</tr>
<tr>
<td>CBO: coherent betatron oscillations</td>
<td>0.07</td>
<td>0.04</td>
<td>Improved kick; new scraping; taller calorimeters</td>
</tr>
<tr>
<td>E and pitch correction</td>
<td>0.05</td>
<td>0.05</td>
<td>Should be improved with better storage ring simulation, but we keep it as is for now</td>
</tr>
<tr>
<td>Timing shifts</td>
<td>0.02</td>
<td>0.01</td>
<td>Laser calibration; precision determined by amount of data collected</td>
</tr>
<tr>
<td>AGS background</td>
<td>0.01</td>
<td>0.01</td>
<td>Sweeper magnet maintained</td>
</tr>
<tr>
<td>Fit procedure and bin width</td>
<td>0.06</td>
<td>0.01</td>
<td>Limited by number of simulated trials performed</td>
</tr>
<tr>
<td>Vertical waist</td>
<td>0.03</td>
<td>0.01</td>
<td>CBO related; see above</td>
</tr>
<tr>
<td>Other small effects</td>
<td>< 0.03</td>
<td>< 0.02</td>
<td>These either scale with the data set size or from the simulations demonstrating "no effect"</td>
</tr>
<tr>
<td>Total</td>
<td>0.21</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>
The error budget for E969 represents a continuation of improvements already made during E821

<table>
<thead>
<tr>
<th>Systematic uncertainty (ppm)</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>E969 Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field – ω_p</td>
<td>0.5</td>
<td>0.4</td>
<td>0.24</td>
<td>0.17</td>
<td>0.1</td>
</tr>
<tr>
<td>Anomalous precession – ω_a</td>
<td>0.8</td>
<td>0.3</td>
<td>0.31</td>
<td>0.21</td>
<td>0.1</td>
</tr>
</tbody>
</table>

| Statistical uncertainty (ppm) | 4.9 | 1.3 | 0.62 | 0.66 | 0.2 |
| Total Uncertainty (ppm) | 5.0 | 1.3 | 0.73 | 0.72 | 0.25 |

- **Field improvements**: better trolley calibrations, better tracking of the field with time, temperature stability of room, improvements in the hardware
- **Precession improvements** will involve new scraping scheme, lower thresholds, more complete digitization periods, better energy calibration

(L. Roberts, P5)
Funding Profile by Year

(L. Roberts, P5)
Summary

(L. Roberts, P5)

• Historically (g-2) has placed a major hurdle in the path of new theories beyond the standard model.
 – (See the letters from Altarelli, Davier, Ellis, Jackiw, Jaffe, Kane, Wilczek, Winstein sent to P5)

• The (g-2) result must fit with other evidence into a consistent picture of new physics.
Summary, ctd.

(L. Roberts, P5)

• Muon g-2 is **unique and complementary to other information.**

• It will be important to particle physics even beyond the LHC era
 – e.g., determining the value of \(\tan \beta \)

• **Theory can and will support the proposed experimental improvement.**
 – (letters from Davier, De Rafael)

• **E969 provides an important opportunity to capitalize on the substantial investment in E821.**
Extra Slides
Summary: E821 and E969 Costs

E969 Costs (2006 M$)

<table>
<thead>
<tr>
<th>Baselining costs</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS/Booster Rehab including ES&H</td>
<td>11.7</td>
</tr>
<tr>
<td>Construction (44% contingency)</td>
<td>12.2</td>
</tr>
<tr>
<td>Universities (27% contingency)</td>
<td>2.4</td>
</tr>
<tr>
<td>Operations (includes FTEs to support cryo and external beam operations)</td>
<td>13.6</td>
</tr>
<tr>
<td>Total Costs</td>
<td>40.2</td>
</tr>
</tbody>
</table>

- **E821 costs (M$) (as spent $)**
 - Capital 25.0 1989-1998 (L. Roberts, P5)
 - Operations 54.0 1998-2001
 - Total E821 79.0
Funds needed to baseline the costs
(not included in construction cost estimate)

- 1.0 g-2 Ring/Building maintenance
 - 1 man month to engineer an air conditioning system for bldg 919
- 1.1 V/V1 Beam Lines
 - 1 man-months engineering
 - 1 man-months physicist
- 1.2 Inflector
 - A quote from the Furukawa Company for superconductor
- 1.3 E Quads
 - Nothing new, defendable
- 1.8 Kicker
 - Nothing new, defendable
- 1.11 Cryogenics (to determine scope)
 - 2 man-months engineering
 - 1 man-month tech
- 1.12 Vacuum System
 - 1 man-month engineering
- 1.14 Booster/AGS
 - 0.5 man month engineering
 - 0.5 man month physicist
- ES&H – review operation within present guidelines
 - 1 man-month physicist
 - 1 man month engineer
- Preparation of Cost Books, Resource Loaded Schedules, CD0-1 documents etc
 - 4 man-months engineering
 - 4 man--months physicist
- Summary
 - 11 man-month engineering
 - 7 man-month physicist
 - 1 man-month tech

- Required Budget ~ $360K
- Calendar Time Required ~ 6-8 months
Cost Summary: E969 Construction

(L. Roberts, P5)

<table>
<thead>
<tr>
<th>Description</th>
<th>M$</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-2 Ring and building</td>
<td>0.56</td>
<td>21%</td>
</tr>
<tr>
<td>V/V1 Beam Line modifications</td>
<td>2.59</td>
<td>18%</td>
</tr>
<tr>
<td>Inflector (open ends)</td>
<td>0.64</td>
<td>19%</td>
</tr>
<tr>
<td>E-Quad rebuild</td>
<td>0.13</td>
<td>15%</td>
</tr>
<tr>
<td>Additional muon Kicker</td>
<td>0.41</td>
<td>15%</td>
</tr>
<tr>
<td>Cryogenic plant rehab</td>
<td>0.74</td>
<td>233%</td>
</tr>
<tr>
<td>Ring Vacuum System</td>
<td>0.16</td>
<td>29%</td>
</tr>
<tr>
<td>Equipment Testing</td>
<td>0.69</td>
<td>20%</td>
</tr>
<tr>
<td>Project Office</td>
<td>0.37</td>
<td>20%</td>
</tr>
</tbody>
</table>

- **Sub-Total, direct costs** $6.3
- **Indirects (reduced)** $2.2
- **Contingency (44%)** $3.7

- **Sub-Total, with indirects** $12.2

- **University (Detectors/DAQ)** $2.4

- **Total** $14.6

FY 2006 $’s
Cost Summary:
AGS/Booster Restoration to High Intensity

- **AGS/Booster, Direct Costs**
 - Electrical Modifications $2.11 22% (L. Roberts, P5)
 - Mechanical Modifications $1.25 20%
 - RF System Modifications $0.67 22%
 - Instrumentation $0.34 20%
 - Project Support $0.33 34%
 - Controls $0.16 24%
 - ES&H (CAPS) $2.63 28%

- **Sub-Total, direct costs** $7.5
- **Indirects (reduced)** $1.9
- **Contingency (24%)** $2.3

- **Total** $11.7

FY 2006 $’s
E969 Operations Cost Summary

(L. Roberts, P5)

FY 2006 $’s

<table>
<thead>
<tr>
<th>Year</th>
<th>Wks w/RHIC</th>
<th>Wks Alone</th>
<th>Physics Wks</th>
<th>Cost (M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>12</td>
<td>0</td>
<td>3</td>
<td>$ 5.8</td>
</tr>
<tr>
<td>2nd</td>
<td>20</td>
<td>0</td>
<td>15</td>
<td>$ 7.8</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>0</td>
<td>18</td>
<td>$ 13.6</td>
</tr>
</tbody>
</table>

If warranted to push beyond 0.25 ppm, an additional 10-15 week run with RHIC adds ~$6-7M
Milestones/Timeline (by FY) (L. Roberts, P5)

- CD0 Beamline design – backward/forward decision; detector prototype; simulations of injection, scraping, CBO damping; decide on scope of cryo work; begin tube/base development
- +9 Months CD1; Begin electronics engineering
- CD2 - Engineering on beamline, Cryo
- CD3 - Start to order long leadtime items e.g. Inflector, rad-hard front-end magnets, etc.; Refurbish storage ring; develop on-line; develop NMR tools for 0.1 ppm.

Construction
- Shim magnet, improve on absolute calibration
- CD4 - Finish construction, few weeks of low intensity beam
- Commission experiment, engineering and short physics run
- Major data collection run
The ± 1 ppm uniformity in the average field is obtained with special shimming tools.

We can shim the dipole, quadrupole, and sextupole independently.

E969 will require additional shimming, monitoring and calibration.

(L. Roberts, P5)