CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$

An Experimentalist-Theorist Collaboration

" Λ_b Decays into Λ -Vector", Physics Letters B614 (2005), 165-173; "Testing Fundamental symmetries with Λ_b Decays", hep-ph/0602043; "Analysis of $\Lambda_b \to \Lambda J \psi$ ", LHCb Physics 2005-067

E. Conte¹, Z.J. Ajaltouni¹, O. Leitner²

 ¹ Laboratoire de Physique Corpusculaire de Clermont-Ferrand IN2P3/CNRS Université Blaise Pascal F-63177 Aubière Cedex France
 ² LPNHE, Groupe Théorie, Univ. P.- M. Curie, 4 Pl. Jussieu, F-75252, Paris, FRANCE

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 1)

Summary

I)- Physical Motivations : $\Lambda_b \rightarrow \Lambda V(1^-)$

II)- Kinematics and Dynamics of Cascade Decays.

III)- Physical Results :
* Branching Ratios,
* Asymmetries,
* Polarizations,
* Time-Odd Observables.

IV)- Perspectives with LHCb Detector.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 2)

I- Physical Motivations

 $\approx 10\%$ of produced $b\bar{b}$ pairs hadronize into Beauty Baryons : $\mathcal{B}_b = \Lambda_b, \ \Sigma_b, \ \Xi_b, \dots$ $\approx 90\%$ of \mathcal{B}_b dominated by $\Lambda_b(\bar{\Lambda_b})$.

 \Downarrow

• Testing the validity of **CP** symmetry in Beauty Baryons like in ordinary Hyperons :

 $\Gamma(\mathcal{B}_b \to X) \neq \Gamma(\bar{\mathcal{B}}_b \to \bar{X}) \oplus \text{Other Observables}$

• Further Step :

Significant Increase of the number of tests of both CP and TR Symmetries.

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 3)

Main Properties of TR Operator

$$\vec{r} \rightarrow \vec{r}, \ \vec{p} \rightarrow -\vec{p}, \ \vec{\ell} = \vec{r} \times \vec{p} \rightarrow -\vec{\ell}, \ \text{spin} \ \vec{s} \rightarrow -\vec{s}$$

AND
Initial State \longleftrightarrow Final State

BUT

Impossibility to realize in Nature the Time-Reversed process of a physical one, like β Decay, $\Lambda \to p\pi^-$

SO

* Initial and Final States are NOT interchanged $\begin{array}{c} \downarrow \\ \mathsf{Time-Odd} \ \mathsf{Operator} \neq \mathsf{Time-Reversal} \\ \downarrow \\ \end{array}$ Triple Product Correlations (TPC)

 \star Pseudo-Scalar observables which change sign under TR :

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 4)

$$\vec{v_i} = \vec{p_i}, \vec{s_i} \ , \ C_{ijk} = \vec{v_i} \cdot (\vec{v_j} \times \vec{v_k}) \longrightarrow TR \rightarrow -C_{ijk}$$

like Transverse Polarization : $\vec{s_i} \cdot (\vec{p_j} \times \vec{p_k})$

$$\begin{aligned} \mathsf{IF} : &< C_{ijk} > \neq 0 &\equiv & \mathsf{distribution} \text{ of } C_{ijk} \text{ is not symmetric} \\ & \downarrow \\ & \mathsf{Sign of } \mathsf{T}\operatorname{-\mathsf{Odd}} \mathsf{effect} \end{aligned}$$

- T-Odd effect can be taken as a "Serious Candidate" for a TRV process if :
- * Final State Interactions (FSI) are negligible .

OR

* FSI can be computed and subtracted from the data.

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 5)

• Standard Channels which FSI are negligible or calculable : (London et al, Aliev et al, Chen et al).

 $\downarrow \\ \Lambda_b \to Baryon \ (Hyperon)\ell^+\ell^-, \quad Baryon \ (Hyperon)h^+h^-$

* 3 body final states; ℓ^{\pm} or h^{\pm} not originating from an Intermediate Resonance.

• Our approach (Z.J.Ajaltouni, E.Conte, O.Leitner)

* Emphasis on Physical Observables constructed from 2 Intermediate Resonances :

$$\Lambda_b \to \Lambda V(1^-), \quad \Lambda \to p\pi^-, \quad J/\psi \to \mu^+\mu^-, \quad \rho^0(\omega) \to \pi^+\pi^-$$

Weak Decay of the $\Lambda_b \implies$ Two Polarized Intermediate Resonances. (1) Component(s) of the Vector-Polarization $\vec{\mathcal{P}}$ NOT invariant by TR (2) Constructing many TPC, C_{ijk}

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 6)

II- Kinematics and Dynamics of Cascade Decays

• Λ_b is Transversally Polarized because of a QCD mechanism at the partonic level.

• Laboratory Frame : $\vec{p}_1 = \text{Incident Proton momentum}$

$$\vec{e_1} = \vec{p_1}/p_1 \ , \ \vec{e_3} = \frac{\vec{p_1} \times \vec{p_b}}{|\vec{p_1} \times \vec{p_b}|} \ , \ \vec{e_2} = \vec{e_3} \times \vec{e_1}$$

 \Downarrow

with

 $\mathcal{P}^{\Lambda_b} \ = <\vec{S_{\Lambda_b}} \cdot \vec{e_3} > = \ \rho_{++}^{\Lambda_b} - \rho_{--}^{\Lambda_b} \neq 0$

• Final Spin configurations in the Λ_b Transversity frame : $\Lambda_b(M_i) \Longrightarrow \Lambda(\lambda_1)V(\lambda_2)$ $(\lambda_1, \lambda_2) = (1/2, 0) , (1/2, 1) , (-1/2, -1) , (-1/2, 0)$ $M_i = \pm 1/2 , M_f = \lambda_1 - \lambda_2 = \pm 1/2.$

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 7)

Decay Amplitude expressed in the Jacob-Wick-Jackson (JWJ) formalism

• 1^{st} step : Λ_b Decay

$$A_0(M_i) = \langle 1/2, M_i | S^{(0)} | p, \theta, \phi; \lambda_1, \lambda_2 \rangle = \mathcal{M}_{\Lambda_b}(\lambda_1, \lambda_2) D_{M_i M_f}^{1/2\star}(\phi, \theta, 0)$$
(1)
$$D_{M_i M_f}^j(\phi, \theta, 0) = d_{M_i M_f}^j(\theta) \exp\left(-iM_i\phi\right)$$

- 2^{nd} step : Resonance Decays in their Helicity Frame $A_1(\lambda_1)$ and $A_2(\lambda_2)$
- 3rd step : Total Decay Amplitude

$$\mathcal{A}_I = \sum_{\lambda_1, \lambda_2} A_0(M_i) A_1(\lambda_1) A_2(\lambda_2) .$$
⁽²⁾

 \implies Decay Probability, $d\sigma$, with Λ_b PDM

$$d\sigma \propto \sum_{M_i, M_i'} \rho_{M_i M_i'}^{\Lambda_b} \mathcal{A}_I \mathcal{A}_I^*$$
(3)

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 8)

 \bullet BUT , because of Parity Violation in Weak Hadronic Decays : We introduce the

Helicity Asymmetry parameter, $lpha_{AS}^{\Lambda_b}$

$$\Lambda_{b}(+)|^{2} = |\mathcal{A}_{(1/2,0)}(\Lambda_{b} \to \Lambda V)|^{2} + |\mathcal{A}_{(-1/2,-1)}(\Lambda_{b} \to \Lambda V)|^{2} , \qquad (4)$$

$$|\Lambda_b(-)|^2 = |\mathcal{A}_{(-1/2,0)}(\Lambda_b \to \Lambda V)|^2 + |\mathcal{A}_{(1/2,1)}(\Lambda_b \to \Lambda V)|^2$$
, (5)

Differential Cross-Section :

$$\frac{d\sigma}{d\Omega} \propto 1 + \alpha_{AS} \mathcal{P}^{\Lambda_b} \cos \theta + 2\alpha_{AS} \Re e(\rho_{+-}^{\Lambda_b} \exp i\phi) \sin \theta .$$
(7)

We notice :

* Importance of the Polarization Density Matrix of the produced Λ_b .

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 9)

* New insights in the estimation of the Hadronic Matrix Elements (O.Leitner).

***** Factorization Procedure

Hadronic Mat. El. = Current Products \otimes Form Factors.

Form Factors

- * Computed in the framework of Heavy Quark Effective Theory, HQET.
- * Corrections of order $\mathcal{O}(1/m_b)$ are performed.

Estimation of the Λ_b wave-function.

Current Products

 \star OPE formalism used to evaluate both the soft contributions and the hard ones.

 \implies Both Tree and Penguin Diagrams are computed.

Details and Numerical Values can be found in our last publication, hep-ph/0602043.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 10)

III- Physical Results

1. Branching Ratios

$$\Gamma(\Lambda_b \to \Lambda V) = \frac{E_{\Lambda} + M_{\Lambda}}{M_{\Lambda_b}} \frac{P_V}{16\pi^2} \int_{\Omega} |A_0(M_i)|^2 d\Omega$$
(8)

• Number of Color, N_c^{eff} , free because of Factorization Hypothesis.

N_c^{eff}	2	2.5	3	3.5
$\Lambda_b \to \Lambda J/\psi$	8.95×10^{-4}	2.79×10^{-4}	0.62×10^{-4}	0.03×10^{-4}
$\Lambda_b \to \Lambda \rho^0$	1.62×10^{-7}	1.89×10^{-7}	2.2×10^{-7}	2.4×10^{-7}
$\Lambda_b \to \Lambda \omega$	22.3×10^{-7}	4.75×10^{-7}	0.2×10^{-7}	0.64×10^{-7}

Experimental Branching Ratios (PDG, 2004)

 $\mathcal{BR}^{exp}(\Lambda_b \to \Lambda J/\psi) = (4.7 \pm 2.1 \pm 1.9) \times 10^{-4}.$

 $\implies 2.0 \leq N_c^{eff} \leq 3.0$

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 11)

2. Angular distribution parameters

$$\begin{split} \Lambda_b &\to \Lambda V(1^-) \\ &\alpha_{AS}^{\Lambda_b}(\Lambda \rho^0 - \omega) = 19.4\% \ , \ \alpha_{AS}^{\Lambda_b}(\Lambda J/\psi) = 49.0\% \end{split}$$

$\Lambda \to p\pi$

$$W_1(\theta_1,\phi_1) \propto 1 + \mathcal{P}^{\Lambda} \alpha_{AS}^{\Lambda} \cos \theta_1 - \frac{\pi}{2} \mathcal{P}^{\Lambda_b} \alpha_{AS}^{\Lambda} \Re e \left[\rho_{ij}^{\Lambda} \exp\left(i\phi_1\right) \right] \sin \theta_1$$
(9)

$$\mathcal{P}^{\Lambda} = -0.167 , \quad \rho^{\Lambda}_{+-} = 0.25 \quad (J/\psi) ,$$

$$\mathcal{P}^{\Lambda} = -0.21 , \quad \rho^{\Lambda}_{+-} = 0.31 \quad (\rho^{0}(\omega)) . \tag{10}$$

 $V(1^-) \to \ell^+ \ell^-$

$$\frac{dN}{d\cos\theta_2} \propto (3\rho_{00}^V - 1)\cos^2\theta_2 + (1 - \rho_{00}^V)$$
$$\rho_{00}^{J/\psi} = 0.66$$

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 12)

3. Effects of $\rho^0 - \omega$ Mixing

 \star Asmmetry parameter, $a_{CP}(s_{\rho})$, between two conjugated channels :

$$a_{CP}(s_{\rho}) = \frac{\mathcal{BR}(\Lambda_b) - \mathcal{BR}(\Lambda_b)}{\mathcal{BR}(\Lambda_b) + \mathcal{BR}(\bar{\Lambda}_b)}.$$
(11)

 $s_{
ho} = \pi^+ \pi^-$ Invariant Mass.

* At the ω mass, Asymmetry $\approx~~7.5\%~~{\rm for}~~N_c^{eff}=3.0$

* Amplification of the Direct CP Violation between Λ_b and $\bar{\Lambda}_b$ because of strong phase δ_S passing through 90° at the ω mass.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 13)

4. Time-Odd Observables

• Laboratory Transversity Frame \implies Resonance Local Frame

$$\vec{e_1}$$
 , $\vec{e_2}$, $\vec{e_3}$ \implies $\vec{e_X}$, $\vec{e_Y}$, $\vec{e_Z}$

• Transverse Basis in Resonance rest-frame : (Jackson, 1965)

$$\vec{p} = \vec{p}_{\Lambda} \text{ or } \vec{p}_{V}, \quad \vec{e}_{L} = \frac{\vec{p}}{p}, \quad \vec{e}_{T} = \frac{\vec{e}_{Z} \times \vec{e}_{L}}{|\vec{e}_{Z} \times \vec{e}_{L}|}, \quad \vec{e}_{N} = \vec{e}_{T} \times \vec{e}_{L}.$$
 (12)

Resonance Vector-Polarization

$$\vec{\mathcal{P}}^{(i)} = P_L^{(i)} \vec{e}_L + P_N^{(i)} \vec{e}_N + P_T^{(i)} \vec{e}_T , \qquad (13)$$

with

•

$$P_j^{(i)} = \vec{\mathcal{P}}^{(i)} \cdot \vec{e}_j \text{ with } j = L, N, T$$

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 14)

 Transformation under Parity and Time Rev 	versal
--	--------

Observable	Parity	TR
$ec{s}$	Even	Odd
$\vec{\mathcal{P}}$	Even	Odd
$\vec{e_Z}$	Even	Even
$\vec{e_L}$	Odd	Odd
$\vec{e_T}$	Odd	Odd
$\vec{e_N}$	Even	Even
P_L	Odd	Even
P_T	Odd	Even
P_N	Even	ODD

• If Normal Polarization $P_N \neq 0 \Rightarrow$ Sign of TR Violation.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 15)

Special Angles

* \vec{n}_{Λ} and \vec{n}_{V} unit vectors normal respectively to Λ and V decay planes.

$$\vec{n}_{\Lambda} = \frac{\vec{p}_{p} \times \vec{p}_{\pi}}{|\vec{p}_{p} \times \vec{p}_{\pi}|} , \quad \vec{n}_{V} = \frac{\vec{p}_{l+} \times \vec{p}_{l-}}{|\vec{p}_{l+} \times \vec{p}_{l-}|} , \quad \text{or} \quad \vec{n}_{V} = \frac{\vec{p}_{h+} \times \vec{p}_{h-}}{|\vec{p}_{h+} \times \vec{p}_{h-}|} . \tag{14}$$

 \implies Vectors which are EVEN under TR.

BUT, Cosine and Sine of their Azimuthal Angles :

$$\phi_{\vec{n}_{\Lambda}}$$
 and $\phi_{\vec{n}_{V}}$ (or $\phi_{(n_{i})}$)

$$\vec{u}_i = \frac{\vec{e}_Z \times \vec{n}_i}{|\vec{e}_Z \times \vec{n}_i|} , \quad \cos \phi_{(n_i)} = \vec{e}_Y \cdot \vec{u}_i , \quad \sin \phi_{(n_i)} = \vec{e}_Z \cdot (\vec{e}_Y \times \vec{u}_i) , \quad \vec{n}_i = \vec{n}_\Lambda , \quad \vec{n}_V , ($$

$$\downarrow \downarrow \downarrow \downarrow \downarrow$$

$$\cos \phi_{(n_i)} , \quad \sin \phi_{(n_i)} \quad \text{are ODD by TR}$$

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 16)

• Those asymmetries depend on the azimuthal angle distributions of Λ in Λ_b rest-frame :

$$d\sigma/d\phi \propto 1 + \frac{\pi}{2} \alpha_{AS} \Big(\Re e(\rho_{+-}^{\Lambda_b}) \cos \phi - \Im m(\rho_{+-}^{\Lambda_b}) \sin \phi \Big) ,$$
 (16)

* Conservative values of non-diagonal elements of Λ_b PDM : $\Re e(\rho_{+-}^{\Lambda_b}) = -\Im m(\rho_{+-}^{\Lambda_b}) = \sqrt{2}/2.$

$$\Lambda_b \to \Lambda J/\psi ; \qquad AS(\cos\phi_{\vec{n}_\Lambda}) = 4.3\% , \quad \text{and} AS(\sin\phi_{\vec{n}_\Lambda}) = -5.5\% ,$$

$$\Lambda_b \to \Lambda \rho^0(\omega) ; \qquad AS(\cos\phi_{\vec{n}_\Lambda}) = 2.4\% , \quad \text{and} AS(\sin\phi_{\vec{n}_\Lambda}) = -2.7\% .$$
(17)

• NO Asymmetries in $\cos \phi_{\vec{n}_V}$ and $\sin \phi_{\vec{n}_V}$

 \implies Possible explanation (?)

 \star T-Odd or TRV effects appear in processes where Parity is Violated like $\Lambda \to p \pi^-$

 \star T-Odd effects absent in $V(1^-) \rightarrow \ell^+ \ell^-$, $\, h^+ h^-$ where Parity is conserved.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 17)

IV- Perspectives with LHCb detector

- Dynamics models implemented in LHCb generator software(EvtGen) for $\Lambda_b \to \Lambda J/\Psi$ and $\Lambda_b \to \Lambda \rho^0(\omega)$
- A first analysis of $\Lambda_b \to \Lambda J/\Psi$ is achieved with LHCb detector simulations. Study of channels with V = ϕ , ρ^0 and $\omega(\pi^+\pi^-\pi^0)$ are in progress

 $\mathop{\mathbb{E}}_{\stackrel{\Lambda}{=} 0}^{0.2}$ -0.4-0.6 -0.8-1.0-1.2*z* [m] 2 8 4 6 Upstream track ΤT Long track T track Downstream track VELO VELO track T1 T2 T3

Λ life-time: $c\tau$ =78.9 mm (K_s^0 life-time : $c\tau$ =26.8mm)

Repartition of track combinations : LL = 25% DD = 53% LU = 14%LD = 5%

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 18)

True Λ_b nominal mass - selected Λ_b mass (sample of 280,000 evts)

- Global efficiency (including the 3 trigger levels) : 0.47%.
- B/S ratio for $b\bar{b}$ background : 0.30
- no prompt chamonium remains in the loose mass window other specific backgrounds negligible

about 19,000 reconstructed and selected Λ_b ($\Lambda J/\Psi$) a year are expected !

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 19)

Perspectives

- Some results ... :
- \star A complete calculation of the Hadronic Matrix Element : Tree \oplus Penguin
- \star Implementation of these models in EvtGen code
- ... What remains to be done
- * Computing analytically the vector-polarization of each resonance,
- Λ and $V(1^{-})$.
- \Rightarrow allowing coherent tests to the Monte-Carlo results.
- \star Resolution of the T-odd observables given by LHCb detector

Time-Reversal, conservation or violation, is a Challenge for LHCb.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 20)

BACKUP SLIDES

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 21)

Dynamics Model for Λ_b **Decays**

* New insights in the estimation of the Hadronic Matrix Elements (O.Leitner).

***** Factorization Procedure

Hadronic Mat. El. = Current Products \otimes Form Factors.

Form Factors

 \implies

- * Computed in the framework of Heavy Quark Effective Theory, HQET.
- \star Corrections of order $\mathcal{O}(1/m_b)$ are performed.

Estimation of the Λ_b wave-function.

Effective Field Theory (OPE)

 \star OPE formalism used to evaluate both the soft contributions and the hard ones.

CP Symmetry and Time Reversal in $\Lambda_b \rightarrow \Lambda V(1^-)$ (page 22)

$$\mathcal{H}^{eff} = \frac{G_F}{\sqrt{2}} V_{qb} V_{qs}^{\star} \sum_{i=1}^{2} c_i(m_b) O_i(m_b) , \qquad (18)$$

* $c_i(m_b) =$ Wilson Coefficients representing the Perturbative (hard) part. * $O_i(m_b) =$ Operators representing the Non-Perturbative (soft) part.

* Both Tree and Penguin Diagrams are computed.

$$\mathcal{A}_{(\lambda_1,\lambda_2)}(\Lambda_b \to \Lambda V) = \frac{G_F}{\sqrt{2}} f_V E_V \langle \Lambda | \bar{s} \gamma_\mu (1 - \gamma_5) b | \Lambda_b \rangle_{(\lambda_\Lambda,\lambda_V)}$$
(19)

$$\left\{ \mathcal{M}_{\Lambda_b}^T(\Lambda_b \to \Lambda V) - \mathcal{M}_{\Lambda_b}^P(\Lambda_b \to \Lambda V) \right\} , \qquad (20)$$

with

$$\mathcal{M}_{\Lambda_b}^{T,P}(\Lambda_b \to \Lambda V) = V_{ckm}^{T,P} A_V^{T,P}(a_i) .$$
(21)

 $a_i =$ Combinations of W.C. according to the nature of $v(1^-)$.

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 23)

Current Matrix Element

* Four amplitudes related respectively to the 4 Helicity Final States :

$$\mathcal{M}_{\Lambda_{b}}(\Lambda_{b} \to \Lambda V) = \begin{cases} -\frac{P_{V}}{E_{V}} \left(\frac{m_{\Lambda_{b}} + m_{\Lambda}}{E_{\Lambda} + m_{\Lambda}} F^{-}(q^{2}) + 2F_{2}(q^{2}) \right); & (\lambda_{\Lambda}, \lambda_{V}) = (\frac{1}{2}, 0), \\ \frac{1}{\sqrt{2}} \left(\frac{P_{V}}{E_{\Lambda} + m_{\Lambda}} F^{-}(q^{2}) + F^{+}(q^{2}) \right); & (\lambda_{\Lambda}, \lambda_{V}) = (-\frac{1}{2}, -\frac{1}{\sqrt{2}} \left(\frac{P_{V}}{E_{\Lambda} + m_{\Lambda}} F^{-}(q^{2}) - F^{+}(q^{2}) \right); & (\lambda_{\Lambda}, \lambda_{V}) = (\frac{1}{2}, 1), \\ \left(\frac{F^{+}(q^{2}) + \frac{P_{V}^{2}}{E_{V}(E_{V} + m_{\Lambda})} F^{-}(q^{2}) \right); & (\lambda_{\Lambda}, \lambda_{V}) = (-\frac{1}{2}, 0) \end{cases}$$

$$(22)$$

Details and Numerical Values can be found in our last publication, hep-ph/0602043.

CP Symmetry and Time Reversal in $\Lambda_b \to \Lambda V(1^-)$ (page 24)