

SUSY in top final states at mSUGRA point LM1 with CMS

Saeid Paktinat (IPM, Tehran)

Luc Pape (ETH, Zurich)

Maria Spiropulu (CERN)

Outline

- Motivation/Objectives
- Signal and Background characterization and MC samples used
- Kinematic fit for top extraction
- Selection Requirements
- Results
- CMS reach
- Conclusion

Motivation/Objectives

- Examine low mass SUSY observability in final states containing top
- Use CMS test point LM1 where gluino cross section is high (35 pb)
- Target the decays to stop and sbottom
- Because they are heavier than the top
 - a lot of top quarks are generated via SUSY production/decays.
- The 2 neutralinos result in events with high MET.
- The inclusive SUSY signature is top+MET.

LM1: spectrum and branching ratios

18.09

12.17

16.33

12.53

40.58

23.85

Objects and Algorithms

- ORCA_8_7_1 (Jets from ORCA_8_7_4)
- IterCone 0.5 SplittedUELowLumEPHTInput
- Isolated electrons are removed from the list of the input for the jetFinder.
- Gamma/Jet calibrated jets:

 $E_T^{raw} > 30 \text{ GeV}$ $|\eta| < 2.5$

- TrackCountingBTagging
- METfromECALPlusHCALTowers + muon correction
- Isolated $e/\mu P_T > 5.0$ and $|\eta| < 2.5$, ($\Delta R(I-j) > 0.2$)
- 2C kinematic fit to extract top quark (CMS NOTE-2006/023)

2 Constraints Kinematic Fit

- The purpose of this analysis is not to measure the top mass
 → top mass is used with W mass as the 2 constraints to find the best jet combination.
 - 1. To reject non-SUSY backgrounds (W+X)
 - 2. To reject SUSY combinatorial backgrounds
- Only energy of Jets is smeared in the detector

(checked that directional errors have a small effect.)

$$\chi^2 = \sum_{i=1}^3 \frac{(E_i - E_i^m)^2}{\sigma_i^2} + \frac{(m_W - M_W)^2}{(\Gamma_W/2)^2} + \frac{(m_{Top} - M_{Top})^2}{(\Gamma_{Top}/2)^2}$$

- Last 2 terms: take into account the width of the particles. (Breit-Wigner approximated by Gaussian.)
- m_W and m_{Top} computed from jets. The third jet is a *b*-jet.
- Error parameterization from the CMS Note AN2005-005

2 Constraints Kinematic Fit

uses the (χ^2 probability) as quantitative criterion to reject "fake" top

In THIS SLIDE TotalSusy= 200 k LM1 (inclusive), tt=100 k (inclusive)

2 Constraints Kinematic Fit

Improves the kinematic features of reconstructed top and *W* Improved energy resolution for *W* and top by ~40% and ~50% Improved bias

S. Paktinat CMS AN Approval Meeting

Selection requirements (2)

Selection requirements (3)

Selection requirements (4)

Selection Requirements Summary

cut	SUSY(withTop)	SUSY(noTop)	ttInc	WWj	ZWj	Single Top	wT/noT
x-sec(pb) NLO	52		830	269.91	51.5	250	-
No.of.used.events	4942	61	1674500	305000	70000	100000	-
NEve(Nor.xsec)1 fb ⁻¹	8375	43625	830000	269910	51500	250000	0.19
L1T (Jet/Met)	6269	33582	75806	18498	598	10875	0.19
HLT (Jet/Met)	5070	29427	14430	4733	142	1750	0.17
$MET \ge 150 \text{ GeV}$	4183	25677	4930	2312	99	653	0.16
$n_{bj} \ge 1$	3457	14388	3718	792	32	355	0.24
$n_j^{b \ or \ light} \ge 4$	1789	4576	769	25	0	33	0.39
A convergent Fit	1335	3062	557	12	0	28	0.44
χ^2 probability >0.1	105	69	56	0	0	5	1.52
$\Delta \phi < 2.6$	79	52	12	0	0	5	1.51
$n_l > 0$	38	17	5	0	0	0	2.19

The most efficient requirement to increase SUSY(wTop/noTop) is the χ^2 probability > 0.1

S. Paktinat CMS AN Approval Meeting

MET after selection

Selection on QCD background

$\hat{P_T}$ range	x-sec(pb)	No.Used	LIT	HLT	MET	n_{bj}	n_j	χ^2	$\Delta \phi$	n_l
QCD-80-120	3.0e+6	242486	874	0	0	0	0	0	0	0
QCD-120-170	5.0e+5	213842	9189	29	1	0	0	0	0	0
QCD-170-230	1.0e+5	338478	48009	495	12	3	0	0	0	0
QCD-230-300	23800	389978	108256	1866	78	42	2	0	0	0
QCD-300-380	6400	283983	114690	2984	241	152	22	0	0	0
QCD-380-470	1880	191989	97488	4056	466	350	40	1	1	0
QCD-470-600	690	175987	104025	6759	905	740	156	0	0	0
QCD-600-800	202	94957	64547	6758	1031	907	222	0	0	0
QCD-800-1000	35.7	49499	38539	5602	976	908	262	1	1	0
QCD-1000-1400	10.8	23250	19869	3761	841	812	269	0	0	0
QCD-1400-1800	1.06	2700	2476	570	155	145	57	1	1	0

Selection on W+jets background

sample	x-sec(pb)	No.Used	L1T	HLT	MET	n_{bj}	n_j	χ^2	$\Delta \phi$	n_l
Wbb_lv	106.59 (LO)	224000	1437	593	349	271	1	0	0	0
Wj_1v_25-170	10069 (LO)	757936	6057	423	67	9	0	0	0	0
Wj_1v_200-1400	48.86 (LO)	86000	55203	39839	25376	7142	124	3	0	0

Although the new analysis is more powerful against QCD and W+ jets, but

Low statistics in low P_T (high cross section) bins cause a high statistical uncertainty.

•Could benefit from higher statistics for low P_T bins

11/04/2006

Results

- Selection efficiency SUSY(withTop) 4.5*10⁻³
- Selection efficiency SUSY(noTop) 3.9*10⁻⁴
- Selection efficiency tt
 6.0*10⁻⁶
- S = SUSY events (withTop + noTop)

$$\frac{S}{B} = \frac{\text{SUSY(withTop) + SUSY(noTop)}}{t\bar{t}} = \frac{38 + 17}{5} = 11$$

SUSY events: withTop > 2 * noTop

Systematics

Systematic	Value%	
JES (Jets)	5.1	
JES (Met)	18.3	
b-tagging	8	
Total	20	

Considered dominant systematics (from det-PRS) for tt:

- Jet Energy Scale (Jets, 5% 1fb^{-1,}) (MET, 5% 1fb^{-1,})
- *b*-tagging (b-tau)

5 sigma discovery

Using Bityukov-Krasnikov formulae for significance, $Significance = 2 \times (\sqrt{S + B} - \sqrt{B})$

the minimum Integrated Luminosity for a 5 sigma discovery is

 $5 = \sqrt{IL} \times 2 \times (\sqrt{55 + 5} - \sqrt{5}) \Longrightarrow IL = 0.21 fb^{-1}$

In this IL, S and B are 11 and 1, respectively. It means that the statistical uncertainty is dominant, so the systematics are neglected.

Reach in m_0 - $m_{1/2}$ plane

Ntuples are generated for \leq 200 GeV steps in both m0 and m1/2. Total points are 36 points. NLO x-sec from prospino1.

Conclusion

- A 2C kinematic fit is adopted that improves the top quark extraction in the LM1 SUSY sample.
- The observability of SUSY in inclusive top+MET final state is studied.
- CMS reach in m0-m1/2 plane is studied by using FAMOS.

Back up Slides

Summary for KinFit:

- Efficiency: 46% of tt events with a *b*-jet and 2 light jets have a convergent fit with χ² probability > 0.05
- (92% if χ^2 probability > 0.0)
- Fake rate: 4.5% of SUSY(noTop) events with a *b*-jet and 2 light jets have a convergent fit with χ^2 probability > 0.05
- (27% if χ² probability > 0.0)
- **Purity:** 33% of the fitted top quarks have a generated top closer than $\Delta R = 0.5$ that decays in W(jj)b and all j,j and b have $|\eta|<2.5$ and $E_T > 30$ GeV with χ^2 probability > 0.05
- (44% if χ^2 probability > 0.05)

Jet/Lepton Separation

Points for scan

In every point the minimum IL for 5 sigma discovery is shown

Reach in m_0 - $m_{1/2}$ plane

MC data samples and cross sections

- su05-LM1: NLO x-sec 52 pb (Prospino/SUSYBSM Group) (signal)
- jm03b-ZWj: NLO x-sec 51.5 pb (Generators PRS Group) (background)
- jm03b-WWj: NLO x-sec 270 pb (ditto) (background)
- jm03b-tt: NLO x-sec 830 pb (ditto) (background)
- jm03b-qcd LO x-sec from pythia (background)
 <u>published DC04 samples</u> PYTHIA 6.215 & Low Luminosity Pileup
- mSUGRA LM1 IsaPythia: ISAJET 7.69+ PYTHIA 6.225

MC data samples and cross sections

(newly considered backgrounds)

- Single Top (t-channel) NLO x-sec 250 pb
 Generated by TopRex 4.11, W decays inclusively.
- Wbb LO x-sec 107 pb
 - □ Generated by TopRex 4.11, W decays leptonically.
- Wj (25<P_T<170) LO x-sec 10069 pb
- Wj (200<P_T<1400) LO x-sec 48.86 pb
 - □ Both Generated by PYTHIA, W decays leptonically.

Extracted *W* and top by the fit

11/04/2006

Some x-sec, BR

- m0-m1/2 1850.000 250.000 X-SEC = 6.5 pb (NLO)
- M(GL) = 696.10
- M(UL) = 1900.77 M(UR) = 1903.69 M(DL) = 1902.46 M(DR) = 1904.68
- M(B1) = 1560.51 M(B2) = 1862.23 M(T1) = 1137.35 M(T2) = 1570.48
- M(Z1) = -99.37 M(Z2) = -195.12 M(Z3) = 380.84 M(Z4) = -398.38
- M(W1) = -195.94 M(W2) = -397.64
- M(HL) = 116.14 M(HH) = 1878.02 M(HA) = 1865.65 M(H+) = 1879.65
- GLSS --> W1SS+ BT 0.42630E-04 0.64082E-01 ΤB GLSS --> W1SS- TP BB 0.42630E-04 0.64082E-01 GLSS --> W2SS+ BT TB 0.18323E-04 0.27543E-01 GLSS --> W2SS- TP 0.18323E-04 0.27543E-01 BB GLSS --> Z1SS TP TB 0.45796E-04 0.68841E-01 GLSS --> Z2SS TP ΤB 0.43684E-05 0.65667E-02

Some x-sec, BR

- m0-m1/2 1950.000 350.000 X-SEC = 1pb (NLO)
- ISAJET masses (with signs):
- M(GL) = 927.28
- M(UL) = 2058.29 M(UR) = 2057.18 M(DL) = 2059.84 M(DR) = 2057.66
- M(B1) = 1703.06 M(B2) = 2012.35 M(T1) = 1259.72 M(T2) = 1713.83
- M(SN) = 1956.90 M(EL) = 1960.57 M(ER) = 1951.69
- M(NTAU)= 1949.01 M(TAU1)= 1935.69 M(TAU2)= 1953.05
- M(Z1) = -141.90 M(Z2) = -278.97 M(Z3) = 473.38 M(Z4) = -490.39
- M(W1) = -279.85 M(W2) = -489.73

•	GLSS	> W1SS+ BT	ТВ	0.18788E-03	0.68487E-01
•	GLSS	> W1SS- TP	BB	0.18788E-03	0.68487E-01
•	GLSS	> W2SS+ BT	ТВ	0.23320E-03	0.85011E-01
•	GLSS	> W2SS- TP	BB	0.23320E-03	0.85011E-01
•	GLSS	> Z1SS TP	ТВ	0.27985E-03	0.10202E+00
•	GLSS	> Z2SS TP	ТВ	0.41819E-04	0.15245E-01
•	GLSS	> Z3SS TP	ТВ	0.33028E-04	0.12040E-01
	GLSS	> Z4SS TP	ТВ	0.78771E-04	0.28715E-01

Some x-sec, BR

- m0-m1/2 550.000 350.000 XSEC = 5.1 pb (NLO)
- ISAJET masses (with signs):
- M(GL) = 857.27
- M(UL) = 930.12 M(UR) = 912.29 M(DL) = 933.60 M(DR) = 911.05
- M(B1) = 823.46 M(B2) = 890.61 M(T1) = 665.12 M(T2) = 857.23
- M(SN) = 592.36 M(EL) = 599.98 M(ER) = 565.46
- M(NTAU)= 589.95 M(TAU1)= 559.14 M(TAU2)= 598.71
- M(Z1) = -139.13 M(Z2) = -268.11 M(Z3) = 464.84 M(Z4) = -481.81
- M(W1) = -268.51 M(W2) = -481.27
- GLSS --> TB1 TP 0.29033E+00 0.38523E+00
- GLSS --> TP1 TB 0.29033E+00 0.38523E+00

Fit Validation(1)

Fit Validation (2)

Matched GenJets (clusterized stable particles)

after fragmentation-hadronization No Detector effects **11%** have a χ^2 probability less than 0.01

Matched RecJets

fragmentation-hadronization and detector effects are in. **15%** have a χ^2 probability less than 0.01

The main sources of the large peak close to zero are the

fragmentation-hadronization effects.

FAMOS vs ORCA(1)

- We run ORCA on a sample of LM1 and tt. ORCA_LM1 and ORCA_tt are the number of the remaining events.
- Do the same with FAMOS. FAMOS_LM1 and FAMOS_tt are the number of the remaining events.
- We check if
 - FAMOS_tt /ORCA_tt = FAMOS_LM1/ORCA_LM1
- To increase the statistics, some cuts are relaxed.

FAMOS vs ORCA(2)

CMS

- 230k tt for ORCA
 46k tt for FAMOS
- 75k LM1 for ORCA 30k LM1 for FAMOS

sample	ORCA	FAMOS	Famos/Orca						
All cuts									
LM1	31.6(22+9.6)	41(28+13)	1.30 ± 0.25						
	No Trigger, No Cut on MET								
LM1	64.8	77	1.18 ± 0.16						
$t\bar{t}$	100.6	121	1.21 ± 0.13						
Only <i>b</i> -jet cut									
LM1	16346.8	12644	0.77						
$t\bar{t}$	27413.2	28184	1.03						
	Only b -jet and n_j cut								
LM1	5807.2	5085	0.88						
$t\bar{t}$	4847.6	4669	0.96						
Only b-jet, n_j and χ^2 cut									
LM1	203.2	216	1.06 ± 0.09						
$t\bar{t}$	724.2	780	1.08 ± 0.05						

 We use 1.3 as the (conservative) scale factor for FAMOS