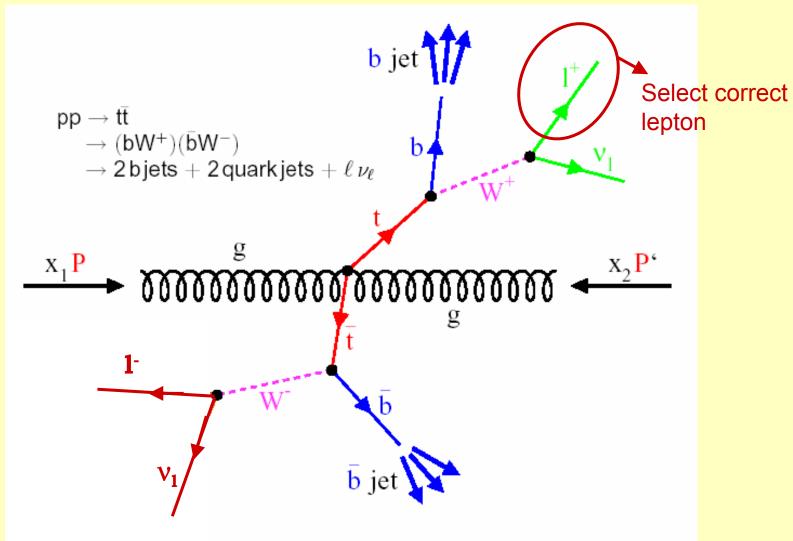


Vrije Universiteit Brussel

Topological search for like-sign top quark pairs at CMS

- motivated by FCNC and TechniColor models
- also a signal for gluino pair production
- based on a good performance of lepton isolation
- CMS analysis based on full simulation
- result: a level of 1pb visible at 30fb-1


Jorgen D'Hondt (Vrije Universiteit Brussel) S.Lowette, G.Hammad, J.Heyninck, P.Van Mulders Flavour@LHC, CERN, 15-17th of May 2006

Topological search

*	Analysis strategy: search for pp*tt excess above Standard Model pp*ttbar \square select di-leptonic top quark pairs (lepton=muon or electron) # σ_{LO} ~28pb \square count the events with equal and opposite charge leptons \square take the ratio $R = \#(like\text{-}sign) / \#(opposite\text{-}sign) \#$ reduce systematics \square this results in a R value for Standard Model only processes \square determine the cross section of pp*tt needed for a 5σ deviation
•	Di-lepton top quark pairs have a clear topology
•	
	□ 2 b-jet and 2 isolated leptons with a different charge
	□ they can be selected with a large S/N
	exploit the performance of the lepton isolation criteria
*	Motivation & same topologies expected in (close to model independent):
	□ FCNC (in SM suppressed, Z' bosons in Topcolor assisted Technicolor (TC2))
	\rightarrow F.Larios and F.Penunuri, hep-ph/0311056
	→ Yu.P.Gouz and S.R.Slabospitsky, hep-ph/9811330
	☐ from top- and techni-pion in TC2 models
	\rightarrow C-X.Yue et al., hep-ph/0601058
	☐ in MSSM from for example gluino pairs
	→ S.Kraml and A.R.Raklev, hep-ph/0512284
	→ A.Alves, O.Eboli and T.Plehn, hep-ph/0605067

Simulated events samples used

Simulated events samples used

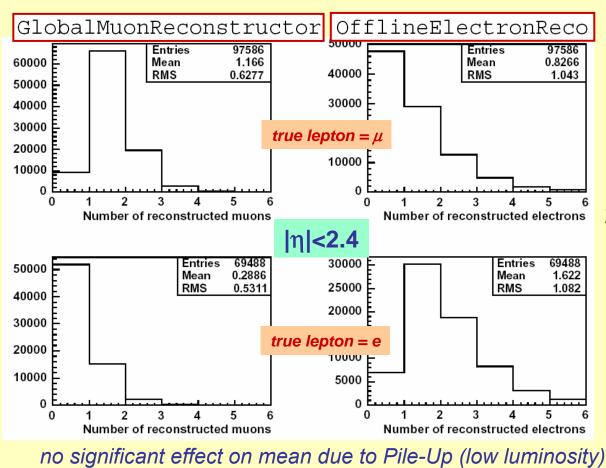
❖ All based on full GEANT4 simulation (*discovery plots are made for 30 fb*-¹)

Low lumi Pile-Up	Number of events	Int.Luminosity	Cross-section	
Low lattii i lie-op		fb ⁻¹	pb	
$t\bar{t} \to bWbW \to b\mu^{\pm}\nu_{\mu}b\mu^{\mp}\nu_{\mu}$	99.3k	14.36	6.91	
$t\bar{t} \to bW\bar{b}W \to be^{\pm}\nu_{\rm e}\bar{b}e^{\mp}\nu_{\rm e}$	99.3k	14.36	6.91	
$t\bar{t} \to bW\bar{b}W \to be^{\pm}\nu_{\rm e}\bar{b}\mu^{\mp}\nu_{\mu}$	198.6k	14.36	13.8	
$t\bar{t} \to bW\bar{b}W \to \tau + X$	492.4k	14.23	34.6	
Other $t\bar{t}$ decays	1778.7k	3.66	498.8	
WW	459.7k	2.42	190.0	
Z + jets	86.7k	0.15	575.7	

- □ small Z+jets and WW samples → factorized efficiency of selection cuts
- ☐ Drell-Yan processes are found to be neglegible

three di-lepton channel used

- ☐ di-muon, di-electron, muon-electron
- ☐ non-overlapping by construction of the event selection

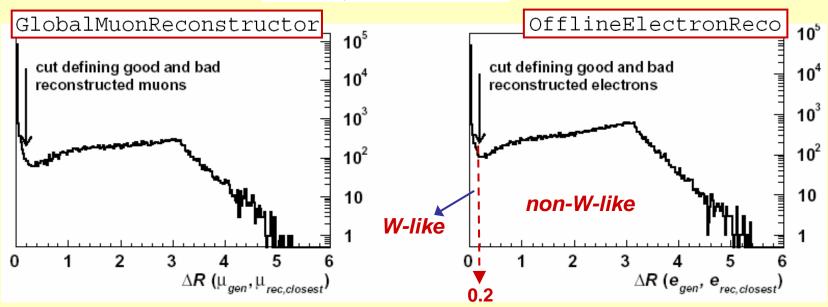

Reconstruction tools and event selection

 ❖ Jets □ reconstructed with the iterative cone algorithm (R=0.5) □ calorimeter Towers above thresholds (excl. lepton energy deposites!) □ calibrated with the Monte Carlo based tools □ reject jets not associated to the primary vertex □ b-tagging via a combined b-tag discriminator (secondary vertex based)
* Trigger (I 4 . ULT)
❖ Trigger (L1 + HLT)
single-muon OR single-electron OR double-muon OR double-electron
\square 88.4% ($\mu\mu$), 77.4% (ee), 79.2% (μ e)
α σσ. 17σ (μμ), 11.17σ (σσ), 1σ.27σ (μσ)
* Leptons
standard MuonReconstructor and ElectronReconstructor
□ selection of correct lepton via a combined likelihood (CMS Note 2005-024)
tracker isolation, calorimeter isolation, vertex matching, transverse
momentum, angular distance to closest jet and for electrons only a variable
reflecting the reconstruction quality of the electron
reneeting the reconstruction quality of the electron
❖ Select the correct leptons in the final state !!

☐ method designed on semi-leptonic ttbar events, but valied for di-lepton events

Lepton Reconstruction

When reconstructing the leptons (e/ μ) in the final state of $t\bar{t} \to bW\bar{b}W \to bq\bar{q}\bar{b}l\nu$ events, one receives several lepton candidates. Only one originates from the true W boson decay, the other could originate from fragmentation or being mis-identified (fake).


Divers aims:

- Identify the true lepton amongst all object identified and reconstructed as leptons
- Create an observable which differentiates between a W and QCD+fake created lepton

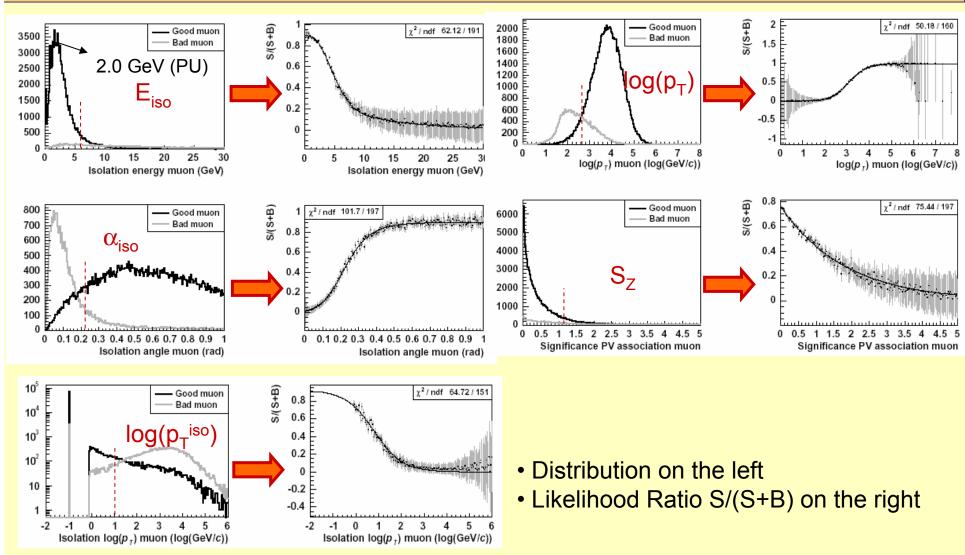
- **❖** Divide the reconstructed lepton candidates in the final state in two categories
 - \square correct matching with generator ($W \rightarrow lv$)
 - □ wrong matching with generator (fakes or from b-quark fragmentation)

Classify the reconstructed objects identified as leptons in two categories via the Monte Carlo truth information via $\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$ for each lepton candidate.

- $\ensuremath{\mathscr{P}}$ distribution of the ΔR of all reconstructed lepton candidates (e/ μ) in the final state
- $rightharpoonup robustness against the used metric was checked: <math>(\eta,\phi)$ versus (θ,ϕ)
- **❖** Matching with generator lepton : $\Delta R(\eta, \phi) < 0.2$

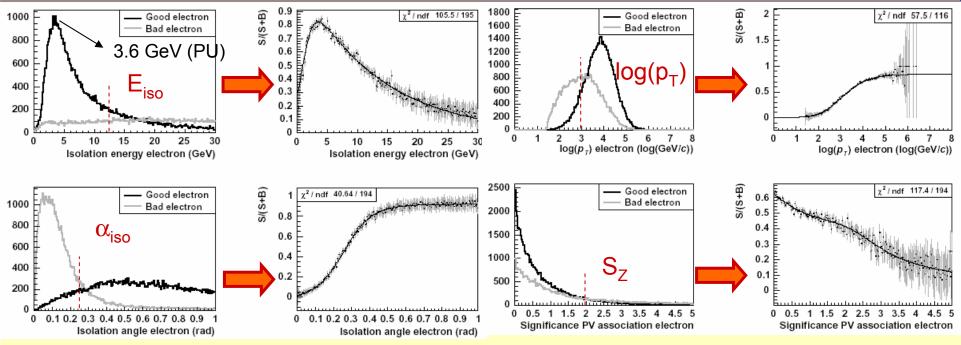
Lepton selection

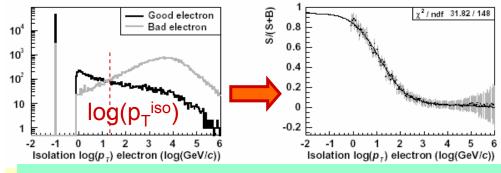
- **❖** Several lepton related observables can differentiate both categories
 - □ transverse momentum of the reconstructed lepton candidate
 - ☐ isolation with respect to tracks
 - □ isolation with respect to calorimeter deposites
 - □ isolation with respect to jets
 - □ vertex matching
 - □ reconstruction quality variable for electrons (ECal versus HCal)
- Combine the information of the observables via a likelihood ratio method Here we consider the PDF of the signal (s) and the background (b) for observable i


$$\mathcal{L}_i(x_i) = \frac{P_i^s(x_i)}{P_i^s(x_i) + P_i^b(x_i)}$$

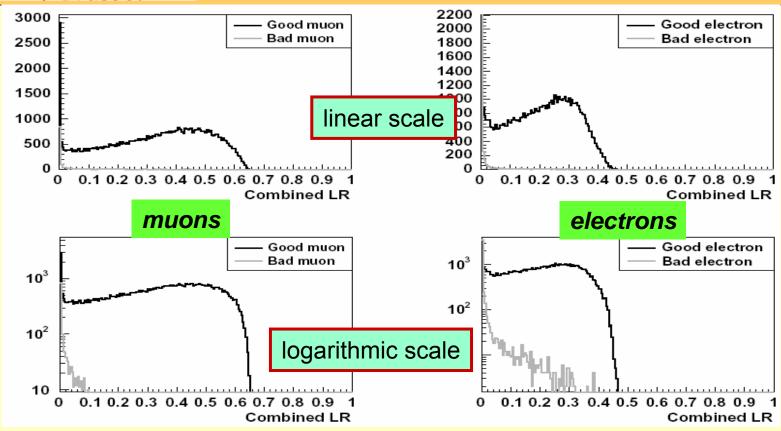
These \mathcal{L}_{i} function are fitted with a single or double sigmoid function. The information is combined with an ad-hoc formula to take into account the small correlations between the observables:

$$\mathcal{L}' = \prod_{i=1}^{5 \text{ or } 6} \mathcal{L}_i(x_i)^{\frac{1}{\sum_j |c_{ij}|}}$$
 correlation between observable i and j




Lepton observables (muon)

Lepton observables (electron)



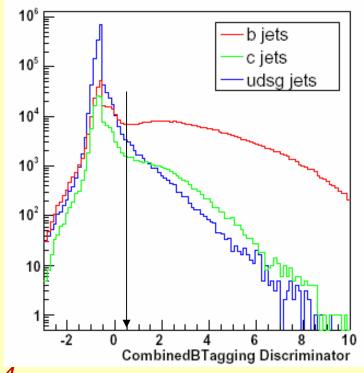
- Distribution on the left
- Likelihood Ratio S/(S+B) on the right

Same tendencies for electrons and muons, as expected

Combined likelihood

Correct lepton is the one with the highest Combined LR value

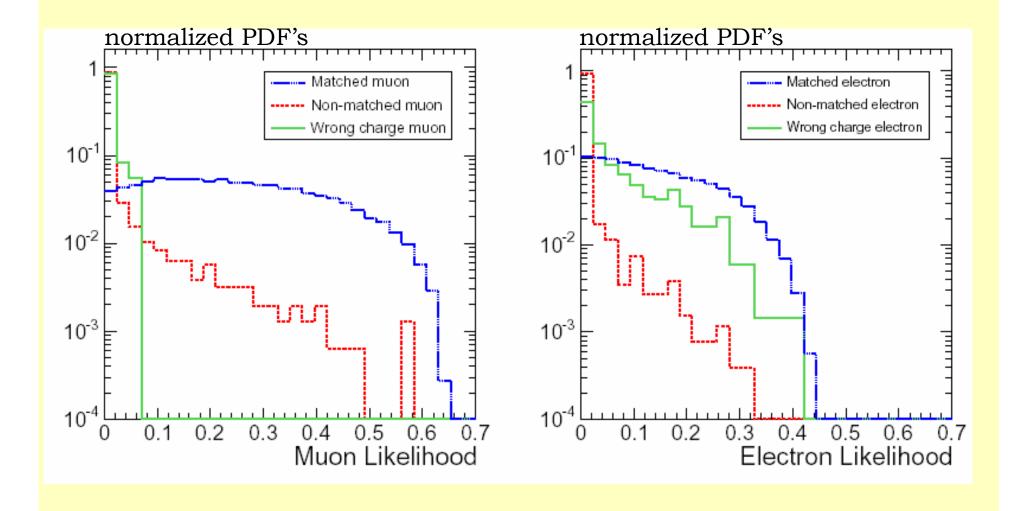
	without HLT				with HLT			
	no pile-up		with pile-up		no pile-up		with pile-up	
	e	μ	е	μ	e	μ	e	μ
correct electron selected	93.7	-	93.3	-	99.2	-	99.0	-
correct muon selected	-	97.3	-	97.9	-	98.4	-	98.9



- ❖ Trigger (L1 + HLT)
 - □ single-muon OR single-electron OR double-muon OR double-electron
 - **38.4%** (μμ), 77.4% (ee), 79.2% (μe)
- Event selection (1st part)
 - 2 Iterative Cone jets : $E_T > 25$ GeV and $|\eta| < 2.4$ and b-tag > 0.5

(combined b-tag discriminant) (CMS Note 2006-014)

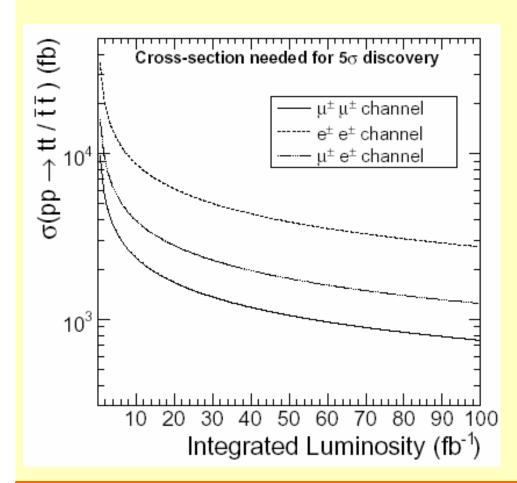
 $|\eta|$ <2.4 = Central Tracker range



- \square 2 selected leptons : p_{τ} > 25 GeV and $|\eta|$ < 2.4
- **Extra selection cuts on the quality of the selected leptons**
 - □ this to purify the identification performance (same versus opposite sign !!)
 - □ not only the correct lepton has to be found, but also the correct charge

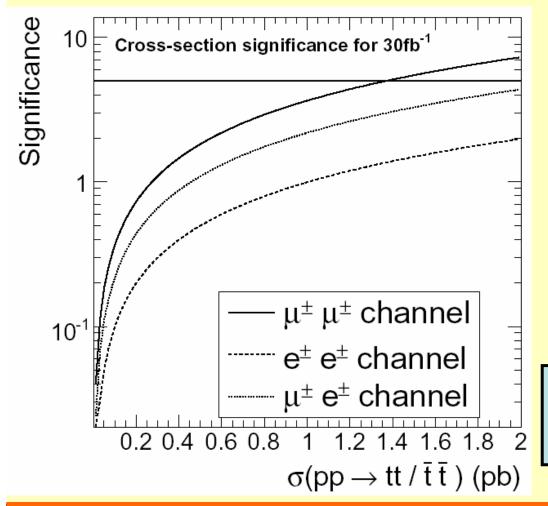
Reconstruction tools and event selection

❖ Event selection (2nd part) : cut on the likelihood observable L>0.05



scaled to 1fb ⁻¹	$\mu\mu$	μe and ee	$tt \rightarrow \tau + X$	Other tt	$W^{\pm}W^{\mp}$	Z + jets	S/N
	6045.0	207450	21606.2	405050	100051		
Before selection	6915.0 207		34606.2	485973.2	189951.7	578033.3	0.0078
Trigger	6114.7	16314.8	17415.6	100137.2	41288.4	266366.7	0.017
Two jets $E_T > 25 \text{ GeV}$	4398.2	11982.7	13560.9	93858.2	20593.8	66146.7	0.032
b-tag criteria	989.8	2485.4	2289.6	8784.7	133.5	240.0	0.13
Two leptons identified	888.2	30.1	375.8	801.6	1.7	73.3	1.30
Two leptons selected (LR and p_T)	481.5	0.07	48.4	3.01	0.4 0.00022	53.3	4.7
Efficiency (in %)	6.96	0.0003	0.14	0.0006		0.0092	
Opposite-sign	481.3	0	48.3	2.19	0	53.3	
Same-sign	0.2	0.07	0.1	0.82	0.4	0	
	ee	με and μμ	$t\bar{t} \rightarrow \tau + X$	Other tt	$W^{\pm}W^{\mp}$	Z + jets	S/N
Before selection	6915.0	20745.0	34606.2	485973.2	189951.7	578033.3	0.0078
Trigger	5354.8	17074.7	17415.6	100137.2	41288.4	266366.7	0.015
Two jets $E_T > 25 \text{ GeV}$	3960.9	12420.0	13560.9	93858.2	20593.8	66146.7	0.029
b-tag criteria	802.7	2672.4	2289.6	8784.7	133.5	240.0	0.11
Two leptons identified	eptons selected (LR and p_T) 285.0 0.3		453.8	2283.6	73.1	126.7	0.57
Two leptons selected (LR and p_T)			37.5	5.2	0.8	53.3	3.1
Efficiency (in %)			0.11	0.0011	0.00044	0.0092	
Opposite-sign	279.6	0.3	36.8	4.1	0.4	46.7	
Same-sign	5.4	0	0.7	1.1	0.4	6.7	
	$e\mu$	$\mu\mu$ and ee	$t\bar{t} \rightarrow \tau + X$	Other tt	$W^{\pm}W^{\mp}$	Z + jets	S/N
Before selection	13830.0	13830.0	34606.2	485973.2	189951.73	578033.3	0.016
Trigger	10960.0	11469.5	17415.6	100137.2	41288.4	266366.7	0.030
Two jets $E_T > 25 \text{ GeV}$	8021.8	8359.1	13560.9	93858.2	20593.8	66146.7	0.061
b-tag criteria	1682.7	1792.5	2289.6	8784.7	133.5	240.0	0.25
Two leptons identified	1500.6	66.4	822.1	3001.6	30.2	20.0	0.88
Two leptons selected (LR and p_T)			85.2	6.3	0.4	0	8.3
Efficiency (in %)			0.25	0.0013	0.00022	0	
Opposite-sign	715.5	0.9	83.8	4.9	0	0	
Same-sign	7.2	0	1.3	1.4	0.4	0	

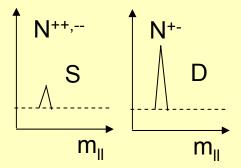
Discovery potential for same-sign events

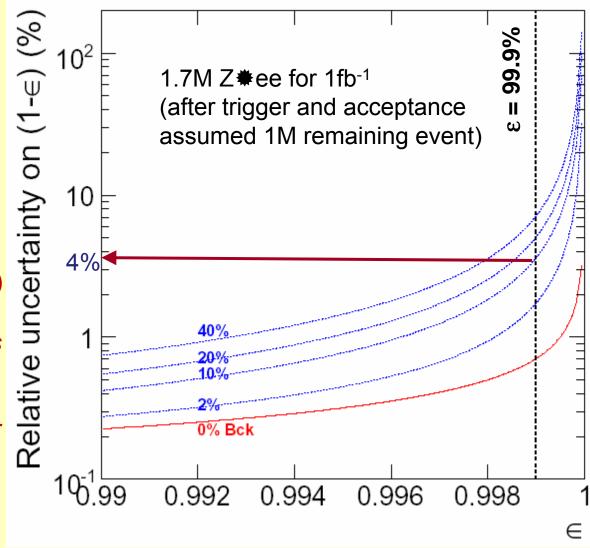

- From the ratio and its expected uncertainty (depending on int.lumi)
 - $lue{}$ compute a 5σ deviation from the expected R^{SM} value
 - □ calculate which cross section is needed of pp->tt for this excess

- ☐ muon channel performs better compared to the electron channel
- ☐ the electron+muon channel is in the middle of the electron and muon significance
- combination foreseen in future

- ❖ In the ratio almost all experimental and theoretical uncertainties cancel
 - ☐ difference in significance when taking these 'rescaled' numbers is small

- □ changing the tau selection efficiency by 20% does not change the significance plots
- ☐ including or not the Z+jets events does not make a significant change in the significance plots

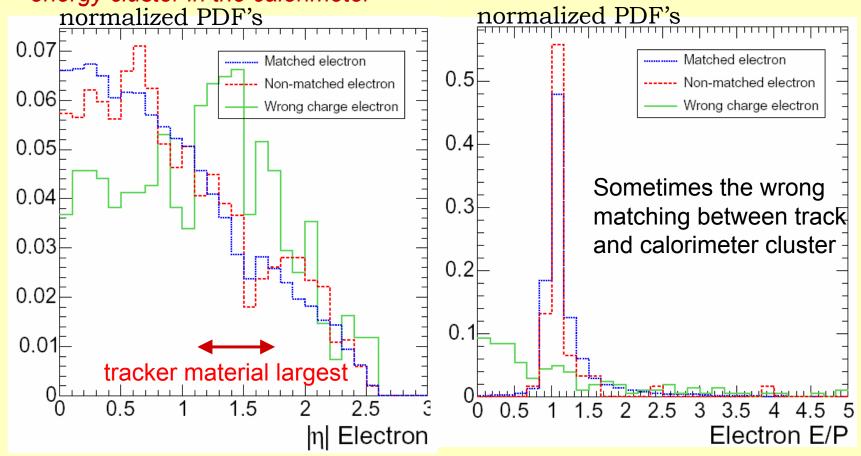

at 30fb-1 a pp*****tt cross section of 1pb becomes visible as a 5σ effect on the ratio R


Universiteit Systematics due to knowledge of charge Id eff

Feasibility study

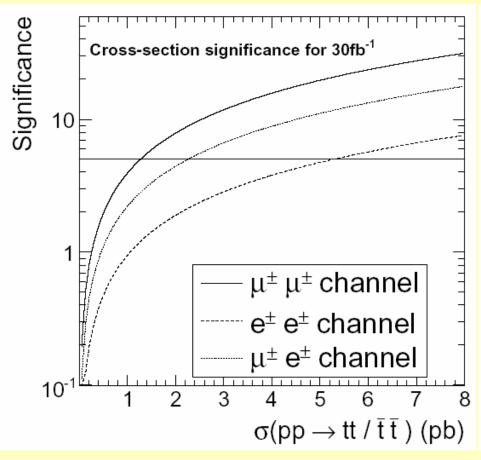
- ☐ using Z decays
- □ select 2 leptons and veto jets

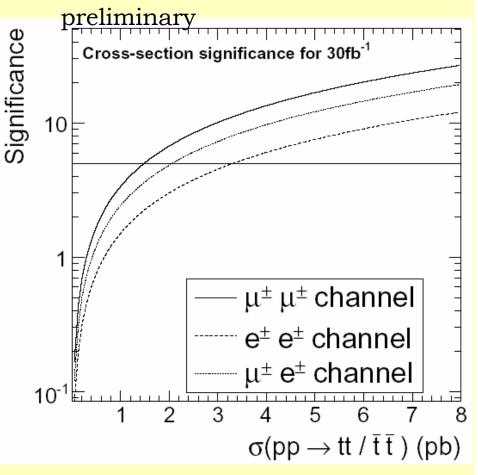
- ☐ make di-lepton mass (S and D)
- lacktriangle mass window count : N_S & N_D
- □ assume equal bck in both plots
- \square estimate uncertainty one can obtain on the charge mis-ID eff or $(1-\varepsilon)$
- □ 10fb⁻¹ # Δ (1- ε) ~ 4% (1- ε) (Bck~10% and ε ~99.9%)
- □ effect neglegible on R



This is just a back-of-the-envelope calculation!

❖ Purify the sample of same-sign lepton pair events


- material budget is important for electrons
- ☐ in the electron reconstruction sometimes a wrong track is matched with the energy cluster in the calorimeter



❖ Preliminary improvement when cutting on E/p for the electrons

 \Box cut 0.7 < E/p < 1.7

without E/p cut

with E/p cut

Event selection of di-lepton top quark pairs:

- ☑ simple and providing a large S/N ... all relevant background taken into account
- ☑ L1+HLT trigger applied
- ✓ very good performance of **lepton likelihood** (rejects QCD+fake leptons)

Construction of the ratio R:

- ☑ checked robustness versus background events
- ☑ indicated where muons are different from electrons (track-cluster matching)

Systematic uncertainties:

- ☑ most of the experimental and theoretical uncertainties cancel in the ratio
- ☑ feasibility study with Z decays to estimate the influence of the uncertainty on the charge identification efficiency (neglegible!)

Result: at 30fb-1 a pp #tt cross section of 1pb becomes visible

Useful results for theoreticians as it provides an almost model independent potential (if new physics has about the same kinematic topology of ttbar)!