$H \rightarrow b\bar{s}$ and $b \rightarrow s\gamma$ in the MSSM with NMFV: FeynArts/FormCalc updated

Siannah Peñaranda, CERN

based on collaboration with *T. Hahn, W. Hollik* and *J.I. Illana*

- 1. Introduction
 - Non Minimal Flavour mixing in the MSSM
- 2. FeynArts and FormCalc updated
- **3**. Compatibility $H \rightarrow b\overline{s} \iff b \rightarrow s\gamma$
- 4. Conclusions

1. Introduction

• <u>Motivation</u>: MSSM Flavour changing Higgs decay branching ratios are some orders of magnitude larger than the corresponding SM rates

 $BR(H_{SM} \rightarrow b\bar{s} + s\bar{b}) \approx 4 \times 10^{-8}$ $BR(H \rightarrow b\bar{s} + s\bar{b}) \approx 10^{-3}$

S. Bejar, F. Dilme, J. Guasch, J. Sola, hep-ph/0402188
A. M. Curiel, M. J. Herrero, W. Hollik, F. Merz, S. Peñaranda, hep-ph/0312135
A. M. Curiel, M. J. Herrero, D. Temes, hep-ph/0302107

- Compatibility with $b \rightarrow s\gamma$ data could restrict the size of these decays
- To provide a phenomenological analysis of the general constraints on FC neutral Higgs decays $H \rightarrow bs \equiv b\bar{s} + s\bar{b}$ coming from bounds, imposed by $b \rightarrow s\gamma$ and $b \rightarrow sl^+l^-$, on the flavour mixing parameters in the MSSM squarks mass matrices
- FeynArts and FormCalc updated with the NMFV MSSM

S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006

Non Minimal Flavour Violation (NMFV) in the MSSM

→ Mixing of scalar quark families (beyond CKM) Parametrization of non-diagonal squark mass matrices

$$M_{\tilde{u}}^{2} = \begin{pmatrix} M_{\tilde{L}_{u}}^{2} & 0 & 0 & m_{u}X_{u} & 0 & 0 \\ 0 & M_{\tilde{L}_{c}}^{2} & \Delta_{LL}^{\tilde{u}} & 0 & m_{c}X_{c} & \Delta_{LR}^{\tilde{u}} \\ 0 & \Delta_{LL}^{\tilde{u}} & M_{\tilde{L}_{t}}^{2} & 0 & \Delta_{RL}^{\tilde{u}} & m_{t}X_{t} \\ \hline m_{u}X_{u}^{*} & 0 & 0 & M_{\tilde{R}_{u}}^{2} & 0 & 0 \\ 0 & m_{c}X_{c}^{*} & \Delta_{RL}^{\tilde{u}} & 0 & M_{\tilde{R}_{c}}^{2} & \Delta_{RR}^{\tilde{u}} \\ 0 & \Delta_{LR}^{\tilde{u}} & m_{t}X_{t}^{*} & 0 & \Delta_{RR}^{\tilde{u}} & M_{\tilde{R}_{c}}^{2} \end{pmatrix}$$

$$M_{\tilde{L}_{q}}^{2} = M_{\tilde{Q}_{q}}^{2} + m_{q}^{2} + \cos 2\beta M_{Z}^{2} (T_{3}^{q} - Q_{q} s_{w}^{2})$$

$$M_{\tilde{R}_{q}}^{2} = M_{\tilde{U}_{q}}^{2} + m_{q}^{2} + \cos 2\beta M_{Z}^{2} Q_{q} s_{w}^{2}$$

$$X_{q} = A_{q} - \mu (\tan \beta)^{-2T_{3}^{q}} (q = u, t, c)$$

$$\Delta_{LL}^{\tilde{u}} \equiv (\delta_{LL}^{\tilde{u}})_{23} M_{\tilde{L}_c} M_{\tilde{L}_t} \quad , \quad \Delta_{LR}^{\tilde{u}} \equiv (\delta_{LR}^{\tilde{u}})_{23} M_{\tilde{L}_c} M_{\tilde{R}_t}$$
$$\Delta_{RR}^{\tilde{u}} \equiv (\delta_{RR}^{\tilde{u}})_{23} M_{\tilde{R}_c} M_{\tilde{R}_t} \quad , \quad \Delta_{RL}^{\tilde{u}} \equiv (\delta_{RL}^{\tilde{u}})_{23} M_{\tilde{R}_c} M_{\tilde{L}_t}$$

Similarly for the down sector $(u \leftrightarrow d, t \leftrightarrow b, c \leftrightarrow s)$, and for all three generations

S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006

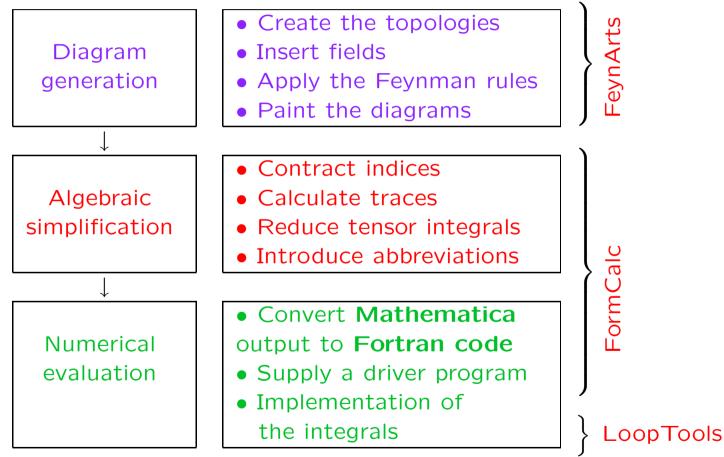
Mass eigenstates :

In order to diagonalize the two 6×6 squark mass matrices, two 6×6 rotation matrices, $R_{\tilde{u}}$ and $R_{\tilde{d}}$, are needed,

$$\tilde{u}_{\alpha} = R_{\tilde{u}}^{\alpha,j} \begin{pmatrix} u_L \\ c_L \\ t_L \\ u_R \\ c_R \\ t_R \end{pmatrix}_j, \quad \tilde{d}_{\alpha} = R_{\tilde{d}}^{\alpha,j} \begin{pmatrix} d_L \\ s_L \\ b_L \\ d_R \\ s_R \\ b_R \end{pmatrix}_j$$

$$R_{\tilde{q}} M_{\tilde{q}}^2 R_{\tilde{q}}^{\dagger} = diag(1...6) \qquad q = (u, d)$$

Flavour mixing through the flavour non-diagonal entries in the squark-mass matrices


⇒ Implemented in FeynArts , FormCalc

2. FeynArts and FormCalc updated

FeynArts http://www.feynarts.de

FormCalc http://www.feynarts.de/formcalc

• The programs can be used for one-loop calculations and they work together smoothly

• Automatic Installation with FeynInstall

NMFV MSSM in FeynArts

- T. Hahn, W. Hollik, J.I. Illana, S. Peñaranda, hep-ph/0512315.
 - New Feynman rules for the NMFV MSSM included.
 - The new model file FVMSSM.mod generalizes the squark couplings in MSSM.mod to the NMFV case
 - Technically: it reads in MSSM.mod and applies algebraic substitutions to yield the new couplings
 - The list of couplings can also be found in FVMSSM.ps , located in the Models subdirectory of FeynArts .
 - FVMSSM.mod contains the following new quantities:

UASf $[s_1, s_2, t]$ the squark mixing matrix $R_{u,d}$ $(s_1, s_2 = 1...6, t = 3(u), 4(d))$

MASf[s,t] the squark masses (s = 1...6, t = 3(u), 4(d)).

NMFV MSSM in FormCalc

T. Hahn, W. Hollik, J.I. Illana, S. Peñaranda, hep-ph/0512315.

- Model Initialization in FormCalc .
 - Initialization routines for the squark masses and mixings (MASf and UASf), i.e. the 6×6 diagonalization of the mass matrix
 - It must be enabled by defining a preprocessor flag in run.F :
 #define FLAVOUR_VIOLATION
 - The NMFV parameters δ are represented by the deltaSf matrix:

double complex deltaSf (s_1, s_2, t) the matrix $(\delta_t)_{s_1s_2}$ $(s_1, s_2 = 1...6, t = 3(u), 4(d))$

– The trilinear couplings A acquire non-zero off-diagonal entries in the presence of NMFV through the relations

$$m_{q,i}(A_q)_{ij} = (M_q^2)_{i,j+3}$$
 , $q = u, d, i, j = 1 \dots 3$.

These off-diagonal trilinear couplings appear in the Higgs-squark-squark couplings.

Summary

- Including NMFV effects requires only three minor changes compared to calculations with the MFV MSSM :
 - choosing FVMSSM.mod instead of MSSM.mod ,
 - setting the FLAVOUR_VIOLATION preprocessor flag in run.F ,
 - providing values for the deltaSf matrix.
- Input: Process definition.
 Output: Fortran code to compute e.g. cross-sections, decay rates, etc...

 It can easily be linked with the new version of the SUSY Les Houches Accord 2 (SLHALib2) to obtain its data from the SLHA records.
 See hep-ph/0605049 (by T. Hahn). **3. Compatibility** $H \rightarrow b\overline{s} \iff b \rightarrow s\gamma$

Flavour changing neutral Higgs decays: $H \rightarrow b\bar{s} + s\bar{b}$

- We focus in the particular decay $H \rightarrow bs$ $(H \equiv H^0, A^0)$
 - \rightarrow Similar dependence on MSSM parameters; as in flavour preserving decays. Six parameters: m_{A^0} , tan β , μ , M_0 , M_2 , A
 - \longrightarrow No renormalization needed
 - \longrightarrow Include all SM + new-physics contributions
 - \longrightarrow Full diagrammatic approach used (valid for all tan β values)
 - \longrightarrow Do not rely on the mass-insertion approximation
- We switched on :
 - only one of the off-diagonal elements of the squark-mass matrix
 - simultaneously several of these elements (several flavour violating parameters)
- We derive predictions for $H \to bs$ compatible with *B*-physics experimental data $(B \to X_s \gamma \text{ and } B \to X_s l^+ l^- \text{ constraints})$

 $\mathcal{B}(B \to X_s \gamma)$

- We consider the expression for the branching ratio $\mathcal{B}(B \to X_s \gamma)$ to NLO A. L. Kagan, M. Neubert, hep-ph/9803368; hep-ph/9805303.
 - In the $\ensuremath{\mathsf{MSSM}}$ with $\ensuremath{\mathsf{NMFV}}$, the relevant operators of the effective Hamiltonian are:

$$O_{2} = \bar{s}_{L} \gamma_{\mu} c_{L} \gamma^{\mu} b_{L},$$

$$O_{7} = \frac{e}{16\pi^{2}} m_{b} \bar{s}_{L} \sigma_{\mu\nu} F^{\mu\nu} b_{R}, \qquad \tilde{O}_{7} = \frac{e}{16\pi^{2}} m_{b} \bar{s}_{R} \sigma_{\mu\nu} F^{\mu\nu} b_{L},$$

$$O_{8} = \frac{g_{s}}{16\pi^{2}} m_{b} \bar{s}_{L} \sigma_{\mu\nu} G^{\mu\nu}_{a} t_{a} b_{R}, \qquad \tilde{O}_{8} = \frac{g_{s}}{16\pi^{2}} m_{b} \bar{s}_{R} \sigma_{\mu\nu} G^{\mu\nu}_{a} t_{a} b_{L}.$$

 \longrightarrow Wilson coefficients $C_{2,7,8}$ and $\tilde{C}_{7,8}$ calculated to one loop.

 \longrightarrow The tilded operators do not contribute in the SM or in the MSSM with MFV, in the limit of massless strange quark.

• The data from $B \to X_s \mu^+ \mu^-$ require that the sign of the coefficient $C_7(m_b)$ is the same as in the SM.

• Parameter scenario:

 $\mu = -700 \text{ GeV}, M_0 = 800 \text{ GeV}, A = 500 \text{ GeV},$ $m_A = 400 \text{ GeV}, M_2 = 300 \text{ GeV}, \tan \beta = 35$

• GUT relations assumed

 $M_3 = \alpha_s / \alpha s_W^2 M_2$ and $M_1 = 5/3 s_W^2 / c_W^2 M_2$

• The same flavour mixing parameter in the up and down sectors is assumed: $(\delta_{ab}^{\tilde{u}})_{23} = (\delta_{ab}^{\tilde{d}})_{23}$

A large difference between δ_{LL}^t and δ_{LL}^b is not allowed: LL blocks of the up- and downsquark mass matrices are not independent because of the SU(2) gauge invariance. M. Misiak, S. Pokorski and J. Rosiek, hep-ph/9703442.

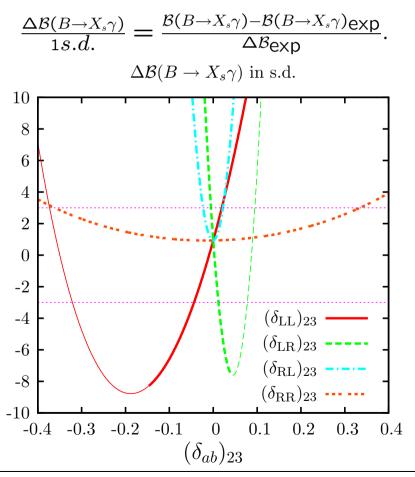
 Higgs-bosons masses and total decay widths computed with FeynHiggs http://www.feynhiggs.de

S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006

NMFV MSSM in FeynHiggs

By S. Heinemeyer, T.Hahn

- The one-loop corrections to Higgs masses and mixing angles are now evaluated with the full 6×6 NMFV contributions (including off-diagonal mass terms and A terms).
- The CKM matrix corrections are included.
- The corresponding information can be passed with the new version of the SUSY Les Houches Accord 2 (SLHALib2)
 See hep-ph/0605049 (by T. Hahn).
- The $\mathcal{B}(B \to X_s \gamma)$ is evaluated, including NMFV effects See hep-ph/0512315 for details.
- As additional constraints, M_W and $\sin^2 \theta_{eff}$, are evaluated, including NMFV effects (full SM + $\Delta \rho$ SUSY corrections).
- Everything is available at www.feynhiggs.de .


Numerical results: One flavour-mixing parameter

 \longrightarrow Switching on one specific off-diagonal element only at a time.

 \rightarrow The horizontal lines in $BR(b \rightarrow s\gamma)$ denote the experimental value with a 3σ error. $BR(B \rightarrow X_s\gamma) = (3.34 \pm 0.38) \times 10^{-4}$

M.Nakao, hep-ex/0312397; BABAR Col., hep-ex/0207074; CLEO Col., hep-ex/0108032

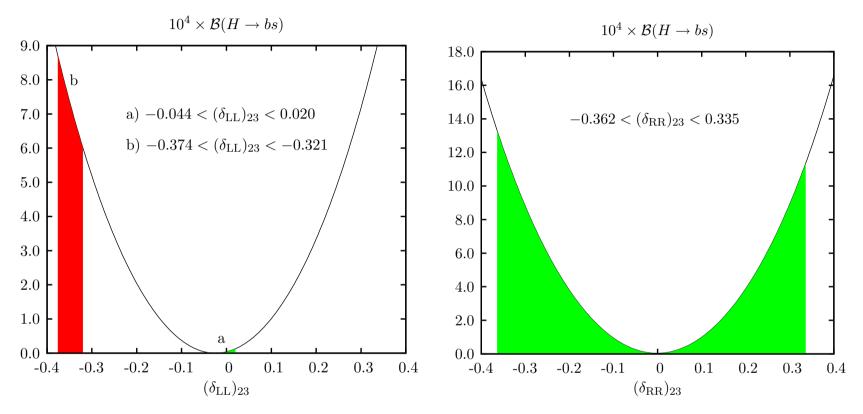
 \longrightarrow The thinner lines for $(\delta_{LL})_{23}$ and $(\delta_{LR})_{23}$ correspond to regions disfavoured by $B \to X_s \mu^+ \mu^-$.

 the flavour-off-diagonal elements are independently constrained to be at most

 $\delta_{ab}\sim 10^{-3} extsf{--}10^{-1}$

- As expected, the bounds on $\delta_{\rm LR}$ are the strongest,

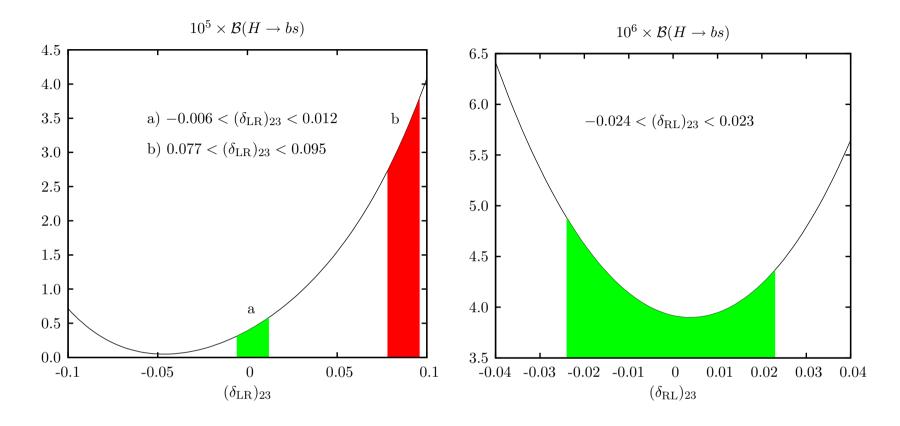
 $\delta_{LR} \sim 10^{-3} \text{--} 10^{-2}$


F. Borzumati *et al.*, hep-ph/9911245; T. Besmer *et al.*, hep-ph/0105292; hep-ph/0111389; F. Gabbiani *et al.*, hep-ph/9604387; M. Misiak *et al.*, hep-ph/9703442...

• The data from $B \to X_s \mu^+ \mu^-$ further constrain the parameters $\delta_{\rm LL}$ and $\delta_{\rm LR}$, the others remaining untouched

S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006

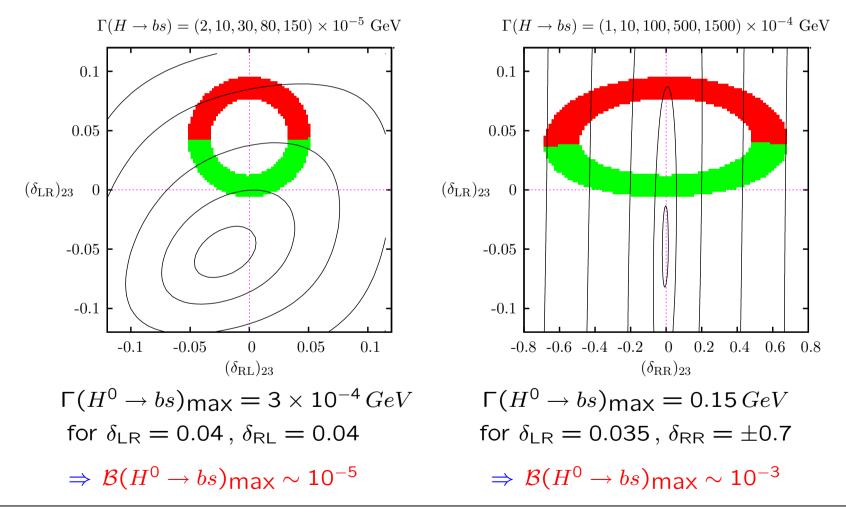
Results for $\mathcal{B}(H^0 \to bs)$ as a function of δ_{ab} (I)


 \longrightarrow The allowed intervals of δ_{ab} determined from $b \to s\gamma$ are indicated by coloured areas. \longrightarrow The red areas are disfavoured by $B \to X_s \mu^+ \mu^-$.

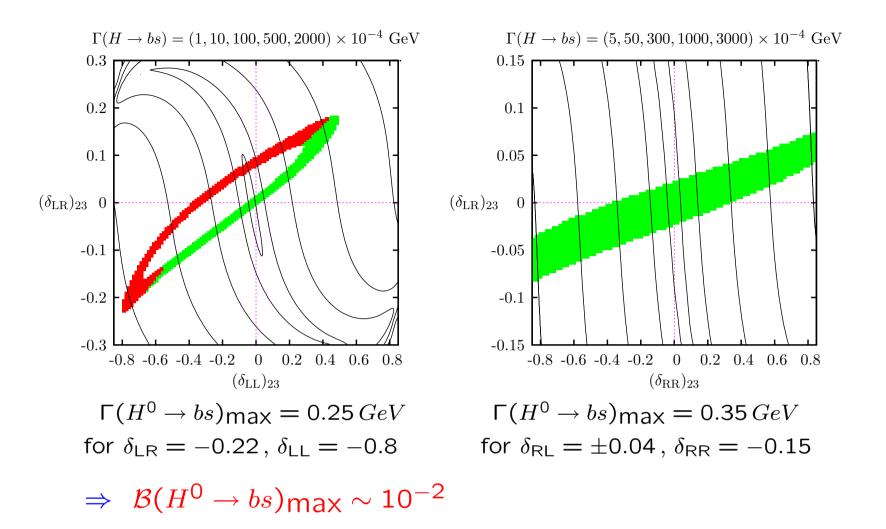
• The largest allowed value of $\mathcal{B}(H^0 \to bs)$, of $\mathcal{O}(10^{-3})$ or $\mathcal{O}(10^{-5})$, is induced by δ_{RR} or δ_{LL} , respectively.

These are the flavour-changing parameters least stringently constrained by the $b \rightarrow s\gamma$ data.

Results for $\mathcal{B}(H^0 \to bs)$ as a function of δ_{ab} (II)

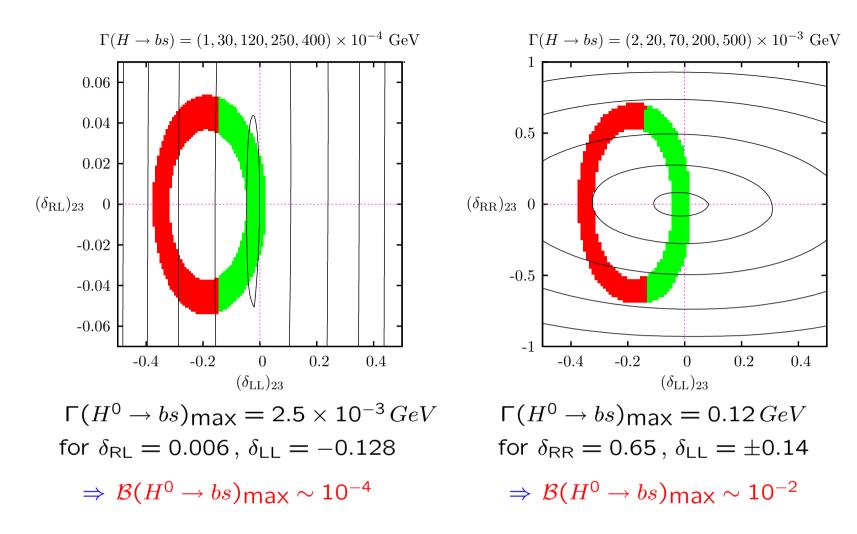


- $\mathcal{B}(H^0 \to bs)$ can reach $\mathcal{O}(10^{-6})$ if induced by δ_{LR} or by δ_{RL} , the most stringently constrained flavour-changing parameter.
- Because of the restrictions imposed by $b \to s\gamma$, $\mathcal{B}(H^0 \to bs)$ depends very little on δ_{LR} and δ_{RL} .


Numerical results: Two flavour-mixing parameter

We investigate whether the previous bounds obtained remain stable

- \longrightarrow Contours of constant $\Gamma(H^0 \rightarrow bs)$ in various planes of δ_{ab} .
- \longrightarrow The coloured bands indicate regions experimentally allowed by $B \to X_s \gamma$.
- \longrightarrow The red bands show regions disfavoured by $B \to X_s \mu^+ \mu^-$.



S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006

The bounds on δ_{LR}, the best constrained for only one non-zero δ_{ab}, are dramatically relaxed when other flavour-changing parameters contribute simultaneously.
 ⇒ Values of δ_{LR} ~ 10⁻¹ are allowed.
 F. Borzumati *et al.*, hep-ph/9911245; T. Besmer *et al.*, hep-ph/0105292.

• In particular, large although fine-tuned values of $\delta_{\rm LL}$ and $\delta_{\rm LR}$ combined are not excluded by $b\to s\gamma$.

Summary

- The predictions on $\mathcal{B}(H^0 \to bs)$ induced by δ_{RR} or δ_{LL} only, of $\mathcal{O}(10^{-3})$ or $\mathcal{O}(10^{-5})$, are greatly exceeded by the combinations of $\delta_{\mathsf{LL}}-\delta_{\mathsf{LR}}$ or $\delta_{\mathsf{RR}}-\delta_{\mathsf{RL}}$ or $\delta_{\mathsf{LL}}-\delta_{\mathsf{RR}}$, which are of $\mathcal{O}(10^{-2})$.
- Values of $\mathcal{B}(H^0 \to bs) \sim \mathcal{O}(10^{-3})$ emerge when considering LR-RR.

4. Conclusions

• Constraints imposed by $b \rightarrow s \gamma$ on flavour changing neutral Higgs decays

 $H \rightarrow b\bar{s} + s\bar{b}$

play an important role in the phenomenology of flavour processes

- Interference effects of SM and the various MSSM sectors must be carefully considered
- The interference effects of the combined set of flavour-mixing parameters leads to large allowed values for the $\mathcal{B}(H^0 \to bs)$, which in general can be one or two orders of magnitude larger than if induced by just one flavour-mixing parameter
- FeynArts, FormCalc and FeynHiggs now include NMFV MSSM

S. Peñaranda, Flavour in the era of the LHC, CERN, 05/2006