“MEG” in this workshop

- 1st meeting, (Nov., 2005)
 - “LFV, status and prospects”, by T.Mori (Tokyo) - plenary -
 - “Improving the sensitivity, MEG and beyond”, by A.Baldini (INFN-Pisa) - WG3 -
- 2nd meeting, (Feb., 2006)
 - no presentation
- 3rd meeting (this time)
 - updates after the 1st meeting and the newest schedule, prospects
CONTENTS

• MEG experiment

• current status
 - beam line & target
 - photon detector
 - positron spectrometer
 - trigger & electronics
 - software & analysis

• schedule & prospects

• conclusion
MEG experiment
search for $\mu \to e\gamma$ decay

- quark mixing (B-factories, etc.)
- neutrino oscillation (SK, KamLAND, etc.)
- charged lepton must also mix
 - but not observed yet
- $\mu \to e\gamma$ decay is the most sensitive, exploring GUT/seesaw via SUSY
 - current experimental limit: $\text{Br}(\mu \to e\gamma) = 1.2 \times 10^{-11}$ (MEGA, PRL83(’99)p83)
 - $\text{Br}(\mu \to e\gamma) = 10^{-11} \sim 10^{-14}$ are predicted
 - predicted branching ratios are within the reach of the next experiments

MEG @ PSI, starts in this year
\(\mu \rightarrow e \gamma \) Signal and Background

- **Signal**
 - \(E_e = E_\gamma = m_\mu/2 = 52.8\text{MeV} \)
 - \(\theta = 180\text{deg.} \)
 - time coincidence

- **Background**
 - radiative muon decay
 - accidental overlap

Clear 2-body kinematics

use \(\mu^+ \) to avoid capture inside stopping target

Background dominated by Accidental overlap
- lower muon beam rate is better
- DC muon beam is the best

Current Status
Current Status

Beam line commissioning

- 2005
 - beam transport solenoid (BTS) commissioning
 - B-field mapping
 - phase space measurements up to end of BTS
 - commissioning BTS with Cryo-plant
 - phase space measurements inside COBRA magnet

- 2006
 - final beam commissioning with degrader
 - control system test

2.5~3.5x10^7 μ/sec (normal)
~1.2x10^8 μ/sec available

US flange DS flange

Target system

- Material
 - Rohacell form / CH$_2$ combination
 - Complete Rohacell
 - Ch$_2$ or polystyrene target + wire frame

- Support
 - from DC frame, rotatable or translational
 - prototype is investigated

- position monitoring
 - idea of using several holes in target \rightarrow x,y,z
Current Status

photon detector, Cryostat

- R&D with prototype completed 2004
- test, calibration, construction phase
- cryostat construction in progress in Italy
- completed soon and several tests will be performed in the factory
- delivery in July
- PMT installation and setup after that
- ready in September as a whole photon detector system
Current Status

photon detector, PMTs and holder

- PMT test
 - all PMTs (>1000) were tested in LXe before installing to the detector
 - Pisa LXe PMT test facility
 - Xenon detector large prototype
 - QE, gain, response linearity

- PMT support holder
 - assembly is progressing now
Current Status

e^+ spectrometer, Drift Chamber

- prototype R&D completed
- construction study in 2005
- final production started
- front-end elec./ pressure system
- beam test is being performed now

- 4 DCs are ready (16DCs we need)
- ~ 2 DC / week
- final production will be completed beginning of this summer
- September, we will start commissioning run with TC, target
Current Status

e^+ spectrometer, Timing Counter

- counter test completed
- PMTs
 - tested, selected
- APD electronics
 - prototypes ready
- TC bag, getting ready
- calibration laser, ordered
- mass-pro. is progressing
- installation test
 - tested by mockup construction
trigger electronics

- PCB production finished
- board mounting in progress
- ready to install in June
Current Status

DAQ, waveform digitizer

- all channel read out by waveform digitizer, DRS (Domino Ring Sampler)
- all channel ready in June.
- DAQ(trigger and readout) electronics ready to start in June.
• ROME based analysis tools are under developing (http://meg.web.psi.ch/wiki/index.php/MEG_Software)

• ROME : see http://midas.psi.ch/rome/

• same analysis framework for experiment/simulation.

• offline software is developed in 2 parts
 • bartender
 • analyzer
Software (simulation)

- Geant3 based MC simulation
 - event generator
 - signal event
 - Michel decay
 - radiative muon decay
 - Annihilation in Flight
 - muon beam and related
 - calibration event (RI source, gamma beam, LED, laser)

- detector simulation
 - detector geometry and material
 - physics processes
 - scintillation ray-tracing and initial waveform simulation (w/o electronics simulation) for PM

- developer’s preview released, public release will be soon.
Software (event display)
Analysis preparation with MC

- BG source study
 - A.I.F.
 - Bremsstrahlung
 - beam related
Current Status

Analysis preparation with MC - cont.

- waveform analysis and pileup rejection study
 - pileup rejection algorithm is progressing
 - use waveform information

- megbartender (post-processor for MC) generates waveform outputs
 - using this tool, waveform analysis is developing

Data (ave.)

Simulated
now, we can reject many of pileups by 3 different way,

- using waveform
- using timing info
- using light dist.
Prospects predicted by theory are shown on a graph. Past experiments are marked with green dots, while the current limit is represented by a dashed line. Predictions made by theory are indicated with a shaded area. The graph shows data points from 1950 to 2010 with values ranging from 10^{-15} to 10^{-1}. Significant progress is indicated by the MEG experiment.
Schedule in 2006

MEG beam time: April-June, August-December

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam / Target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beam tuning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>target production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenon detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cryostat construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drift Chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAQ / Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRS production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trigger inst.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>offline development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ready to start MEG commissioning RUN in November
Expected Background and Reachability

- background rate is being estimated by the newest MC data
- BG related part needs careful tuning (ex. radiative decay spectrum, AIF process etc)
- very preliminary sensitivity estimation
 - beginning 1 month
 - \(10^7 \mu^+/\text{sec} \rightarrow \text{Br(90\%CL)} \sim 2 \times 10^{-12}\)
 - 2 year RUN
 - \(10^7 \mu^+/\text{sec} \rightarrow \text{Br(90\%CL)} \sim 2.1 \times 10^{-13}\)
 - \(3 \times 10^7 \mu^+/\text{sec} \rightarrow \text{Br(90\%CL)} \sim 1.2 \times 10^{-13}\)
 - \(10^8 \mu^+/\text{sec} \rightarrow \text{Br(90\%CL)} \sim 1.5 \times 10^{-13}\) → this should be improved by our detector and analysis algorithm enhancements.
Conclusion

• MEG is search experiment for $\mu \rightarrow e\gamma$ decay
• Beam line commissioning and photon/positron detectors are getting ready
• Online/Offline softwares are also developing
• MEG will start data taking this year
• According to the newest detector simulation, the sensitivity will reach $\sim 10^{-13}$ by 2 years running (2 order improvement than current limit)
• Even if 1 month running, we will be able to reach $\sim 2 \times 10^{-12}$ (1 order improvement than current limit)