

Flavour in the era of the LHC

May 15-17th 2006

Impact of Recent Δm_s Results

Stéphane T'Jampens LAPP/IN2P3/CNRS

On behalf of the CKMfitter group

Δm_s : recent results

The signal has a significance of 3.8σ at 17.5 ps⁻¹

Δm_s : constraint in the ($\overline{\rho}$ - $\overline{\eta}$) plane

$$\Delta m_{s} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B_{s}} m_{W}^{2} \eta_{B} S_{0}(x_{t}) f_{B_{s}}^{2} B_{s} \left| V_{ts} V_{tb}^{*} \right|^{2} dC$$

Very weak dependence on $\overline{\rho}$ and $\overline{\eta}$

The point is:

$$f_{B_{s}}^{2}B_{s} = \frac{f_{B_{s}}^{2}B_{s}}{f_{B_{d}}^{2}B_{d}}f_{B_{d}}^{2}B_{d} = \xi^{2}f_{B_{d}}^{2}B_{d}$$

 ξ : SU(3)-breaking corrections

Measurement of Δm_s reduces the uncertainties on $f^2{}_{B_d}$ B_d since ξ is better known from Lattice QCD

→Leads to improvement of the constraint from Δm_d measurement on $|V_{td}V_{tb}^*|^2$

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{B_{d}} m_{W}^{2} \eta_{B} S_{0}(x_{t}) f_{B_{d}}^{2} B_{d} |V_{td} V_{tb}^{*}|^{2} \propto A^{2} \lambda^{6} [(1 - \bar{\rho})^{2} + \bar{\eta}^{2}]$$

Δm_s : constraint in the $(\overline{\rho} - \overline{\eta})$ plane

 $\xi = 1.24 \pm 0.04 \pm 0.06$ _{chiral logs}

 $\xi = (1.06+0.122-0.047)$ [lattice value not in the fit]

Not yet competitive with LQCD

Δm_s : constraint in the ($\overline{\rho}$ - $\overline{\eta}$) plane

Global CKM Fit

Constraint on γ

→ sin(2β_s) =0.0365 ± 0.002 (global CKM fit)
→ Measurement at the LHC will be a very sensitive probe to NP