New Physics in B_s **Mixing** Patricia Ball

IPPP, Durham

What can we learn from ΔM_s ?

Quite a few papers already...

- M. Ciuchini and L. Silvestrini, hep-ph/0603114
- M. Endo and S. Mishima, hep-ph/0603251
- M. Blanke, A.J. Buras, D. Guadagnoli and C. Tarantino, hep-ph/0604057
- Z. Ligeti, M. Papucci and G. Perez, arXiv:hep-ph/0604112
- J. Foster, K.I. Okumura and L. Roszkowski, hep-ph/0604121
- P. Ball and R. Fleischer, arXiv:hep-ph/0604249
- S. Khalil, arXiv:hep-ph/0605021
- Y. Grossman, Y. Nir and G. Raz, arXiv:hep-ph/0605028
- A. Datta, arXiv:hep-ph/0605039

What can we learn from ΔM_s ?

- standard approach: determine $|V_{td}/V_{ts}|$ from $\Delta M_d/\Delta M_s$ with "small" theoretical uncertainty, test CKM picture by comparing with UT
- our approach: take V_{tq} from UT and constrain new physics (NP) from ΔM_d and ΔM_s

Focus of this talk:

model-independent analysis of NP contributions

including

- a critical discussion of (hadronic and CKM) input parameters
- a possible 2010 scenario

What can we learn from ΔM_s ?

- standard approach: determine $|V_{td}/V_{ts}|$ from $\Delta M_d/\Delta M_s$ with "small" theoretical uncertainty, test CKM picture by comparing with UT
- our approach: take V_{tq} from UT and constrain new physics (NP) from ΔM_d and ΔM_s

Focus of this talk:

model-independent analysis of NP contributions

including

- a critical discussion of (hadronic and CKM) input parameters
- a possible 2010 scenario

Note: this product is free of MFV!

Generic Parametrisation of New Physics

 $\Delta M_q = 2|M_{12}^q|$ with

•
$$M_{12}^q = M_{12}^{q, \text{SM}} (1 + \kappa_q e^{i\sigma_q})$$

- $\kappa_q > 0$: NP amplitude
- σ_q : new CP-violating phase

Deviation from SM measured by

$$\rho_q \equiv \left| \frac{\Delta M_q}{\Delta M_q^{\rm SM}} \right| = (1 + 2\kappa_q \cos \sigma_q + \kappa_q^2)^{1/2}$$

Q: What is the SM prediction for ΔM_q ?

Generic Parametrisation of New Physics

 $\Delta M_q = 2 |M_{12}^q|$ with

•
$$M_{12}^q = M_{12}^{q, \text{SM}} (1 + \kappa_q e^{i\sigma_q})$$

• $\kappa_q > 0$: NP amplitude

• σ_q : new CP-violating phase

Deviation from SM measured by

Lines of
$$\rho_q = \text{const.}$$
:

$$\rho_q \equiv \left| \frac{\Delta M_q}{\Delta M_q^{\rm SM}} \right| = (1 + 2\kappa_q \cos \sigma_q + \kappa_q^2)^{1/2}$$

Q: What is the SM prediction for ΔM_q ?

ΔM_q in the SM

$$= \frac{G_{\rm F}^2 M_W^2}{12\pi^2} M_{B_q} \hat{\eta}^B \hat{B}_{B_q} f_{B_q}^2 (V_{tq}^* V_{tb})^2 S_0(x_t)$$

- $S_0(x_t = m_t^2/M_W^2) = 2.35 \pm 0.06$: Inami-Lim function
- $\hat{\eta}^B = 0.552$: NLO QCD correction (Buras/Jamin/Weiss '90)
- $\hat{B}_{B_q} f_{B_q}^2 \propto \langle B_q^0 | (\bar{q}b)_{V-A} (\bar{q}b)_{V-A} | \bar{B}_q^0 \rangle$: hadronic matrix element, from lattice
- $V_{tq}^*V_{tb}$: from tree-level processes

CKM Input: tree-level quantities

Express all CKM factors in terms of λ , $|V_{ub}|$, $|V_{cb}|$ and γ :

$$\begin{aligned} |V_{td}^* V_{tb}|^2 &= |V_{cb}|^2 \lambda^2 (1 - 2R_b \cos \gamma + R_b^2) \\ \text{with } R_b &\equiv \left(1 - \frac{\lambda^2}{2} \right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right| \\ |V_{ts}^* V_{tb}|^2 &= |V_{cb}|^2 \left\{ 1 - (1 - 2R_b \cos \gamma) \lambda^2 + O(\lambda^4) \right\} \end{aligned}$$

•
$$\gamma = (65 \pm 20)^{\circ} \text{ from } B \to D^{(*)} K^{(*)}$$

• $R_b = 0.45 \pm 0.03$ with $|V_{ub}|$ from inclusive decays

- $R_b = 0.39 \pm 0.06$ with $|V_{ub}|$ from exclusive decays
- $|V_{td}^*V_{tb}| = (8.6 \pm 1.5) \cdot 10^{-3}$: very sensitive to γ !
- $|V_{ts}^*V_{tb}| = (41.3 \pm 0.7) \cdot 10^{-3}$

Hadronic Matrix Elements from Lattice

 $f_{B_s} \hat{B}_{B_s}^{1/2}$

Kenway (ICHEP 2000) Lellouch (ICHEP 2002) JLQCD (2003) Hashimoto (ICHEP 2004) Kronfeld (CKM05) Okamoto (Lattice 2005)

Hadronic Matrix Elements from Lattice

$$\xi = \frac{f_{B_s} \hat{B}_{B_s}^{1/2}}{f_{B_d} \hat{B}_{B_d}^{1/2}}$$

. 1 10

Kenway (ICHEP 2000) Lellouch (ICHEP 2002) JLQCD (2003) Hashimoto (ICHEP 2004) Kronfeld (CKM05) Okamoto (Lattice 2005)

Hadronic Matrix Elements from Lattice

Take (unquenched) JLQCD and (JL+HP)QCD results as 2006 benchmarks, (JL+HP)QCD as 2010 benchmark.

Open questions:

- validity of staggered fermion action (2005 HPQCD results for f_{B_q})
- error on combining HPQCD results for f_B and JLQCD results for \hat{B}_B ? (Okamoto 2005)
- Wilson fermions at smaller m_q/m_s ? (to reduce log effects of chiral extrapolation)
- non-perturbative renormalisation of staggered fermion results?

• • • •

Predictions for $\Delta M_d^{ m SM}$

$$\Delta M_d^{\rm SM} \big|_{\rm JLQCD} = \left[0.52 \pm 0.17(\gamma, R_b)^{-0.09}_{+0.13}(f_{B_d} \hat{B}_{B_d}^{1/2}) \right] \, \rm{ps}^{-1}$$

$$\rho_d \big|_{\rm JLQCD} = 0.97 \pm 0.33(\gamma, R_b)^{-0.17}_{+0.26}(f_{B_d} \hat{B}_{B_d}^{1/2})$$

$$\Delta M_d^{\rm SM} \big|_{\rm (HP+JL)QCD} = \left[0.69 \pm 0.13(\gamma, R_b) \pm 0.08(f_{B_d} \hat{B}_{B_d}^{1/2}) \right] \, \rm{ps}^{-1}$$

$$\rho_d \big|_{\rm (HP+JL)QCD} = 0.75 \pm 0.25(\gamma, R_b) \pm 0.16(f_{B_d} \hat{B}_{B_d}^{1/2})$$

Predictions for $\Delta M_s^{ m SM}$

$$\begin{split} \Delta M_s^{\rm SM} \big|_{\rm JLQCD} &= (16.1 \pm 2.8) \, {\rm ps}^{-1} \\ \rho_s \big|_{\rm JLQCD} &= 1.08^{+0.03}_{-0.01} (\exp) \pm 0.19 ({\rm th}) \\ \Delta M_s^{\rm SM} \big|_{\rm (HP+JL)QCD} &= (23.4 \pm 3.8) \, {\rm ps}^{-1} \\ \rho_s \big|_{\rm (HP+JL)QCD} &= 0.74^{+0.02}_{-0.01} (\exp) \pm 0.18 ({\rm th}) \quad 1.5\sigma! \end{split}$$

Predictions for $\Delta M_s^{ m SM}$

$$\Delta M_s^{\rm SM} \big|_{\rm JLQCD} = (16.1 \pm 2.8) \, \rm{ps}^{-1}$$

$$\rho_s \big|_{\rm JLQCD} = 1.08^{+0.03}_{-0.01}(\exp) \pm 0.19(\text{th})$$

$$\Delta M_s^{\rm SM} \big|_{\rm (HP+JL)QCD} = (23.4 \pm 3.8) \, \rm{ps}^{-1}$$

$$\rho_s \big|_{\rm (HP+JL)QCD} = 0.74^{+0.02}_{-0.01}(\exp) \pm 0.18(\text{th}) \quad 1.5\sigma!$$

Conclusion from this exercise:

 $\Delta M_q^{\rm SM}$ is *not* very well known!

Not even well enough to distinguish between $\rho_s < 1$ and > 1.

For better constraints, need mixing phase $\phi_q = \arg M_{12}^q$!

Constraints from ϕ_q

$$\phi_q = \arg M_{12}^q = \phi_q^{\text{SM}} + \phi_q^{\text{NP}}$$
 with $\phi_d^{\text{SM}} = 2\beta$, $\phi_s^{\text{SM}} = -2\lambda^2 R_b \sin \gamma \approx 2^\circ$

In addition, $\phi_q^{\text{NP}} \neq 0$ implies a lower bound on κ_q :

Status of ϕ_d

$$b \to c\bar{c}s: \sin \phi_d = \sin(2\beta + \phi_d^{\rm NP}) = 0.687 \pm 0.032$$

• central value down by 1σ in 2005 because of new Belle results

Relation to tree-level CKM parameters: $\sin \beta = \frac{R_b \sin \gamma}{\sqrt{1 - 2R_b \cos \gamma + R_b^2}}$

Depending on value of $|V_{ub}|$, get

$$\phi_d^{\text{NP}}\big|_{\text{incl}} = -(10.1 \pm 4.6)^\circ, \qquad \phi_d^{\text{NP}}\big|_{\text{excl}} = -(2.5 \pm 8.0)^\circ$$

- error of $\phi_d^{
 m NP}$ dominated by $|V_{ub}|$
- dependence on γ small
- no non-perturbative parameters involved*
 - * in addition to $|V_{ub}|$ extraction and up to tiny $O(\lambda^{2})$ effects

A possible 2010 scenario

	2006 value	2010 value
$ V_{cb} $	$(42.0 \pm 0.7) \cdot 10^{-3}$	$(42.0 \pm 0.7) \cdot 10^{-3}$
$ V_{ub} $	$[(4.4 \pm 0.3) \lor (3.8 \pm 0.6)] \cdot 10^{-3}$	$(4.4 \pm 0.2) \cdot 10^{-3}$
γ	$(65 \pm 20)^{\circ}$	$(70\pm5)^{\circ}$
R_b	$[(0.45 \pm 0.03) \lor (0.39 \pm 0.06)]$	0.45 ± 0.02
R_t	0.91 ± 0.16	0.95 ± 0.04
$ V_{td}^*V_{tb} $	$(8.6 \pm 1.5) \cdot 10^{-3}$	$(8.9 \pm 0.4) \cdot 10^{-3}$
$ V_{ts}^*V_{tb} $	$(41.3 \pm 0.7) \cdot 10^{-3}$	$(41.3 \pm 0.7) \cdot 10^{-3}$
eta	$[(26.7 \pm 1.9)^{\circ} \lor (22.9 \pm 3.8)^{\circ}]$	$(26.6 \pm 1.2)^{\circ}$
$f_{B_d} \hat{B}_{B_d}^{1/2}$	JLQCD ∨ (HP+JL)QCD	(HP+JL)QCD
$f_{B_s}\hat{B}_{B_s}^{1/2}$	JLQCD \lor (HP+JL)QCD	(HP+JL)QCD
ξ - s	$\left[\left(1.14 \pm 0.06^{+0.13}_{-0} \right) \lor \left(1.210^{+0.047}_{-0.035} \right) \right]$	$1.210_{-0.035}^{+0.047}$

 ΔM_d and ϕ_d – 2006 and 2010

ΔM_d and ϕ_d – 2006 and 2010

Status of ϕ_s

- no meaninful constraints yet*
- wait for $\Delta\Gamma_s$ and more precise $A_{\rm SL}$ from Tevatron and $B_s \to J/\psi, \phi \phi$ at LHC

 * except for Grossman/Nir/Raz, hep-ph/0604028, who exclude large positive $\sin\phi_s$ from the D0 measurement of $A_{\rm SL}$

Constraints on Specific NP Models: Z'

- assume absence of Z-Z' mixing, i.e. flavour-diagonal Z couplings
- assume flavour non-diagonal Z' couplings only to q_L
- constrain $\rho_L \exp(i\phi_L) \equiv (g'M_Z)/(gM_{Z'})B_{sb}^L$ with B_{sb}^L being $\bar{s}Z'b$ coupling
- $\kappa_s < 2.5$ \longleftrightarrow $\rho_L < 2.6 \cdot 10^{-3}$
- can translate this into bound on Z' mass:

$$1.5 \,\mathrm{TeV}\,\left(\frac{g'}{g}\right) \left|\frac{B_{sb}^L}{V_{ts}}\right| < M_{Z'}$$

should be interesting for direct searches!

MSSM (in MIA)

- MSSM (box diagram) contributions from charged Higgs, neutralinos, photinos, gluinos and charginos*
- for B_s mixing, only gluino contributions relevant
- full NLO analysis in preparation \rightarrow Guadagnoli's talk
- * also from double Higgs penguins, which are however only relevant for large $\tan\beta$

Constraints on $(\delta_{23}^d)_{LL}$ insertion using JLQCD lattice data. Open lines: constraints from a future measurement of ϕ_s .

Summary

- NP contributions to ΔM_q not very strongly constrained because of large hadronic (lattice) uncertainties and, for ΔM_d , the error on γ
- more decisive constraints from NP mixing phases: $\phi_d^{\text{NP}} = -(10.1 \pm 4.6)^\circ$ for $|V_{ub}|$ from inclusive decays, which implies $\kappa_d > 0.09$
- to reduce error, need more precise value of $|V_{ub}|!$
- 2010 scenario: $\phi_d^{\text{NP}} = -(9.8 \pm 2.0)^\circ$, i.e. $\kappa_d > 0.14$
- need to measure NP phase in B_s mixing! (and there's plenty of scope for it, don't believe Gino!)
- good channels at the LHC: $B_s \to J/\psi \phi$, $B_s \to \phi \phi$
- more info also from $\Delta\Gamma_s$ and $A_{\rm SL}$ (Tevatron & LHC)