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s Feynman Diagrammatic Approach — Results
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For a Higgs penguin review see, A. D., hep-ph/0309233
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Why B, — uu~ is interesting ?

SM predicts that B, — pTn~ is a very rare decay with
B(Bs — ptp™)=(3.841.0)x1077.

Main uncertainty from | fp. = 230 + 30 MeV]?2. Additional
small uncertainty +0.3 x 10~ from m; = 175 £ 5 GeV.
It originates from Z-penguin and box diagrams®

%Taken from Lattice, D. Becirevic 2003.
°T. |nami, C.S. Lim (1981); NLO QCD corrections by G. Buchalla, A. J. Buras

(1993) and later by M. Misiak, and J. Urban (1999).
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Other subdominant contributions :
# Higgs penguin (suppressed by my/Myy)
# The photon penguin does not contribute.

Current Experimental bound from CDF :
B(Bs — ptpn™) < 1.0x1077 at 95% CL

A possible evidence of B, — pTp~ at Tevatron will be a
clear signal for new flavour physics.

B. — u+u_

in Supersymmetry — p. 4



Higgs mediated contributions

In SUSY, B(B, — u ) is enhanced by tan® 5 making this
decay interesting for Tevatron and LHC.

There are two approaches to calculate the dominant
contributions :

# Feynman Diagrammatic Approach + Ressumation?
# Effective Lagrangian Approach
Both have advantages and disadvantages

Choudhury and Gaur 1999; Huang, Liao, Yan, Zhu, 2001; Chankowski and
Slawianowska 2001; Bobeth, Ewerth, Kriger, Urban, 2001,2002; Dedes, Dreiner,
Nierste, 2001.
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Higgs mediated contributions

In SUSY, B(B, — u ) is enhanced by tan® 5 making this
decay interesting for Tevatron and LHC.

There are two approaches to calculate the dominant
contributions :

# Feynman Diagrammatic Approach + Ressumation
# Effective Lagrangian Approach?
Both have advantages and disadvantages

4Babu and Kolda 2000: Isidori and Retico, 2001: Dedes and Pilaftsis 2003;
Buras, Chankowski, Rosiek, Slawianowska, 2003; Foster, Okumura, Roszkowski,

2005; Carena, Menon, Noriega-Papaqui, Szynkman, Wagner, 2006.
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Diagrammatic Approach

Step 1. Calculate the diagrams in the mass eigenbasis
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Diagrammatic Approach

Step 1. Calculate the diagrams in the mass eigenbasis
Step 2. Make everywhere the replacement?

g mp(Q)

hy — hy =

4Same method used in b — sy calculation, by Carena,Garcia,Nierste, Wagner,
2000
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Step 3: Use RGEs to connect with the Unification scale
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Diagrammatic Approach

Step 1. Calculate the diagrams in the mass eigenbasis
Step 2. Make everywhere the replacement

Step 3: Use RGEs to connect with the Unification scale
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Effective Lagrangian Approach

Step 1. Start out with the symmetric theory?

*Hempfling 1994; Hall, Rattazzi, Sarid, 1994
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Effective Lagrangian Approach

Step 1. Start out with the symmetric theory

— Ly = ci%hd{cb(f* (14..) + &Y (Eg + Eyhih, + ...”d%
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Effective Lagrangian Approach

Step 1. Start out with the symmetric theory
— Ly = ci%hd{cb(f* (14..) + &Y (Eg + Eyhih, + ) } d}

+ ®)a%hy (1+ .)u) + Hec.
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Effective Lagrangian Approach

Step 2: Find the quark mass terms

\/5 R *d B g L

+ 20 h,u) + H.c.

Uu
\/iR
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Effective Lagrangian Approach

Step 3. Redefine the quark fields-Diagonalize

W) = Uty A = UV,
uh = US u d% = Us d
R R YR, R R “R
U
Mu — %BU7
2 . )
USthad? = \;—:MdVT R!. (1)

withR = 1 + Egtan8 + Eytan 3 [hy|?
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Effective Lagrangian Approach

Step 4. Express Ly In terms of the mass eigenstates

2 —_ A A
— Ly = V2 (tanﬁ(b(l)* — q>g*) dr MgVIR™ 'V d;
v2

2 A N
+ U£®8* dr Mg dy, + (I)gﬂRhuuL + H.c.
2

withR = 1 + Egtan8 + Eytan 3 [hy|?
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Effective Lagrangian Approach

Step 4. Express Ly In terms of the mass eigenstates

Even if we had started with general matrices E,, , E, we
end up with the same Ly where

E, = UM ELU?, E. = URTE U2,

R = 1+ tanﬁ(Eg + Ey |hy)? + )
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Effective Lagrangian Approach

Step 4. Express Ly In terms of the mass eigenstates

RGE induced operators proportional to L{I?TthhduI?

Take the hermitian square of the modified Eq.(1) and solve
for U haThat/? and then iterate
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Effective Lagrangian Approach

Step 5: Express the Higgs fields @(1),2 In terms of their mass
elgenstates H; o 3 In the presence of CP violation®

<I>(1) > \}5{01@]—[7; +i(cosﬁGO—sinﬁOgiHi)},
<I>8 \}§ {O%Hi -+ z’(sinﬁ G + cosf3 OgiHi)},

2 Carena,Ellis,Pilaftsis,Wagner, 2000
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Effective Lagrangian Approach

Step 5. Combine all to construct the Higgs penguin

d d’

H17 H27 H3
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Effective Lagrangian Approach

_ i(l _ VTR1V>t03i , 2)

where R =1 + tanﬁ(Eg + By |hy|? + )

Dedes., Pilaftsis, 2003
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Effective Lagrangian Approach

# Even with flavour and mass squark universality we
observe Higgs mediated FCNCSs!
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Effective Lagrangian Approach

# Even with flavour and mass squark universality we
observe Higgs mediated FCNCSs!

# The Higgs Penguin is enhanced by tan? /3

® The Higgs Penguin is proportional to VIR~V
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Effective Lagrangian Approach
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Effective Lagrangian Approach
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ne Higgs Penguin is enhanced by tan? 3

he Higgs Penguin is proportional to VIR~V
R ~ 1 FCNCs are zero (GIM operative points)

The other light quarks can in general give large
contributions (like the top quark)

CP-violating effects are included

Applied to number of observables,
AMg s, AMg, €x, Bs — pp..., CP-Asymmetries
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Effective Lagrangian Approach

# Even with flavour and mass squark universality we
observe Higgs mediated FCNCSs!

The Higgs Penguin is enhanced by tan? /3

The Higgs Penguin is proportional to VIR~V
If R ~ 1 FCNCs are zero (GIM operative points)

© o o @

The other light quarks can in general give large
contributions (like the top quark)

°

CP-violating effects are included

°

Applied to number of observables,
AMg s, AMg, €x, Bs — pp..., CP-Asymmetries

# The method is limited to large tan 3 = 40 and
Mgusy >> My
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Results

A benchmark scenario

m-=

p XxMgysy

my= |ul= |Ayl= Img = Msysy

m~ ~2mi
MH+~mt
Mw
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GIM operative points
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Bounding the Higgs sector....

® tan 3 = 50 s =
¥ 0 CDF (95% C.L Excluded)
® i <25 TeV 2 %/// //%/
3 07

® Random SUSY =

parameter scan =

assuming

neutralino LSP \ \ \ \
’ Max Br formula 0 500 10;4([)A (Ge\;5>00 2000 2500

Dedes, Huffman, 2004

§) 4
tan 650 GeV
B(B tu7) = 5x10°7 1.0 x 1078
(Bs = p7n) . ( 50 ) ( M , ) " .

B. — u+ -~ in Supersymmetry — p. 16



Conclusions

® B(Bs — putu~)is large in SUSY because of the
tan J-enhanced Higgs penguin

% Numerical codes are available for both approaches, ( send an e-mail to

Athanasios.Dedes@durham.ac.uk)
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