$B_s \rightarrow \mu^+ \mu^-$ in Supersymmetry

Athanasios Dedes

IPPP, University of Durham

CERN, May 15, Flavour in the era of the LHC

 $B_s \rightarrow \mu^+ \mu^-$ in Supersymmetry – p. 1

Outline

- Why $B_s \rightarrow \mu^+ \mu^-$ is interesting ?
- Higgs mediated contributions
 - Feynman Diagrammatic Approach Results
 - Effective Lagrangian Approach Results
- Conclusions

For a Higgs penguin review see, A. D., hep-ph/0309233

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 2

Why $B_s \rightarrow \mu^+ \mu^-$ is interesting ?

SM predicts that $B_s \rightarrow \mu^+ \mu^-$ is a very rare decay with

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.8 \pm 1.0) \times 10^{-9}$$

Main uncertainty from $[f_{B_s} = 230 \pm 30 \text{ MeV}]^a$. Additional small uncertainty $\pm 0.3 \times 10^{-9}$ from $m_t = 175 \pm 5$ GeV. It originates from Z-penguin and box diagrams^b

^aTaken from Lattice, D. Becirevic 2003.

^bT. Inami, C.S. Lim (1981); NLO QCD corrections by G. Buchalla, A. J. Buras (1993) and later by M. Misiak, and J. Urban (1999).

Other subdominant contributions :

- Higgs penguin (suppressed by m_b/M_W)
- The photon penguin does not contribute.

Current Experimental bound from CDF :

$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 1.0 \times 10^{-7} \text{ at } 95\% \text{ CL}$$

A possible evidence of $B_s \rightarrow \mu^+ \mu^-$ at Tevatron will be a clear signal for new flavour physics.

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 4

Higgs mediated contributions

In SUSY, $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is enhanced by $\tan^6 \beta$ making this decay interesting for Tevatron and LHC.

There are two approaches to calculate the dominant contributions :

- Feynman Diagrammatic Approach + Ressumation^a
- Effective Lagrangian Approach

Both have advantages and disadvantages

^aChoudhury and Gaur 1999; Huang, Liao, Yan, Zhu, 2001; Chankowski and Slawianowska 2001; Bobeth, Ewerth, Krüger, Urban, 2001,2002; Dedes, Dreiner, Nierste, 2001.

Higgs mediated contributions

In SUSY, $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is enhanced by $\tan^6 \beta$ making this decay interesting for Tevatron and LHC.

There are two approaches to calculate the dominant contributions :

- Feynman Diagrammatic Approach + Ressumation
- Effective Lagrangian Approach^a

Both have advantages and disadvantages

^aBabu and Kolda 2000; Isidori and Retico, 2001; Dedes and Pilaftsis 2003; Buras, Chankowski, Rosiek, Slawianowska, 2003; Foster, Okumura, Roszkowski, 2005; Carena, Menon, Noriega-Papaqui, Szynkman, Wagner, 2006.

Step 1: Calculate the diagrams in the mass eigenbasis

Step 1: Calculate the diagrams in the mass eigenbasis Step 2: Make everywhere the replacement^a

$$h_b \to h_b = \frac{g}{\sqrt{2}M_W \cos\beta} \frac{m_b(Q)}{1 + \Delta m_b^{SQCD}}$$

^aSame method used in $b \rightarrow s \gamma$ calculation, by Carena,Garcia,Nierste, Wagner, 2000

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 6

- Step 1: Calculate the diagrams in the mass eigenbasis
- Step 2: Make everywhere the replacement
- Step 3: Use RGEs to connect with the Unification scale

- Step 1: Calculate the diagrams in the mass eigenbasis
- Step 2: Make everywhere the replacement
- Step 3: Use RGEs to connect with the Unification scale

Step 1: Start out with the symmetric theory^a

^aHempfling 1994; Hall, Rattazzi, Sarid, 1994

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 7

Step 1: Start out with the symmetric theory

$$-\mathcal{L}_{Y} = \bar{d}_{R}^{0} \mathbf{h}_{\mathbf{d}} \Big[\Phi_{1}^{0*} \left(\mathbf{1} + \ldots \right) + \Phi_{2}^{0*} \left(\hat{\mathbf{E}}_{\mathbf{g}} + \hat{\mathbf{E}}_{\mathbf{u}} \mathbf{h}_{\mathbf{u}}^{\dagger} \mathbf{h}_{\mathbf{u}} + \ldots \right) \Big] d_{L}^{0}$$
$$+ \Phi_{2}^{0} \bar{u}_{R}^{0} \mathbf{h}_{\mathbf{u}} \left(\mathbf{1} + \ldots \right) u_{L}^{0} + \text{H.c.}$$

with the finite non-holomorphic radiative corrections, $\hat{\mathbf{E}}_{\mathbf{g}}, \hat{\mathbf{E}}_{\mathbf{u}}$

Step 1: Start out with the symmetric theory

$$-\mathcal{L}_{Y} = \bar{d}_{R}^{0} \mathbf{h}_{\mathbf{d}} \Big[\Phi_{1}^{0*} (\mathbf{1} + ...) + \Phi_{2}^{0*} \left(\hat{\mathbf{E}}_{\mathbf{g}} + \hat{\mathbf{E}}_{\mathbf{u}} \mathbf{h}_{\mathbf{u}}^{\dagger} \mathbf{h}_{\mathbf{u}} + ... \right) \Big] d_{L}^{0}$$
$$+ \Phi_{2}^{0} \bar{u}_{R}^{0} \mathbf{h}_{\mathbf{u}} (\mathbf{1} + ...) u_{L}^{0} + \text{H.c.}$$

with the finite non-holomorphic radiative corrections, \hat{E}_{g}, \hat{E}_{u}

(a):
$$\hat{\mathbf{E}}_{\mathbf{g}} = \mathbf{1} \frac{2\alpha_s}{3\pi} m_{\tilde{g}}^* \mu^* I(m_{\tilde{d}_L}^2, m_{\tilde{d}_R}^2, |m_{\tilde{g}}|^2)$$

(b): $\hat{\mathbf{E}}_{\mathbf{u}} = \mathbf{1} \frac{1}{16\pi^2} \mu^* A_U^* I(m_{\tilde{u}_L}^2, m_{\tilde{u}_R}^2, |\mu|^2)$

Step 2: Find the quark mass terms

$$-\mathcal{L}_{\text{mass}} = \frac{v_1}{\sqrt{2}} \, \bar{d}_R^0 \, \mathbf{h_d} \Big[\mathbf{1} + \tan\beta \left(\, \hat{\mathbf{E}}_{\mathbf{g}} \, + \, \hat{\mathbf{E}}_{\mathbf{u}} \, \mathbf{h}_{\mathbf{u}}^{\dagger} \mathbf{h}_{\mathbf{u}} \, \right) \, \Big] \, d_L^0$$

+
$$\frac{v_2}{\sqrt{2}} \bar{u}_R^0 \mathbf{h_u} u_L^0$$
 + H.c.

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 8

Step 3: Redefine the quark fields-Diagonalize

with $\hat{\mathbf{R}} = \mathbf{1} + \hat{\mathbf{E}}_{\mathbf{g}} \tan \beta + \hat{\mathbf{E}}_{\mathbf{u}} \tan \beta |\hat{\mathbf{h}}_{\mathbf{u}}|^2$

Step 4: Express \mathcal{L}_Y in terms of the mass eigenstates

$$-\mathcal{L}_{Y} = \frac{\sqrt{2}}{v_{2}} \left(\tan \beta \Phi_{1}^{0*} - \Phi_{2}^{0*} \right) \bar{d}_{R} \,\hat{\mathbf{M}}_{\mathbf{d}} \mathbf{V}^{\dagger} \hat{\mathbf{R}}^{-1} \mathbf{V} \, d_{L}$$
$$+ \frac{\sqrt{2}}{v_{2}} \Phi_{2}^{0*} \, \bar{d}_{R} \, \hat{\mathbf{M}}_{\mathbf{d}} \, d_{L} + \Phi_{2}^{0} \, \bar{u}_{R} \hat{\mathbf{h}}_{\mathbf{u}} u_{L} + \text{H.c.}$$

with
$$\hat{\mathbf{R}} = \mathbf{1} + \hat{\mathbf{E}}_{\mathbf{g}} \tan \beta + \hat{\mathbf{E}}_{\mathbf{u}} \tan \beta |\hat{\mathbf{h}}_{\mathbf{u}}|^2$$

Step 4: Express \mathcal{L}_Y in terms of the mass eigenstates

Even if we had started with general matrices $\tilde{\mathbf{E}}_{\mathbf{u}}$, $\tilde{\mathbf{E}}_{\mathbf{g}}$ we end up with the same \mathcal{L}_{Y} where

 $\mathbf{E}_{\mathbf{g}} = \mathcal{U}_{\mathbf{L}}^{\mathbf{Q}\dagger} \, \tilde{\mathbf{E}}_{\mathbf{g}} \, \mathcal{U}_{\mathbf{L}}^{\mathbf{Q}} \,, \qquad \qquad \mathbf{E}_{\mathbf{u}} = \mathcal{U}_{\mathbf{L}}^{\mathbf{Q}\dagger} \, \tilde{\mathbf{E}}_{\mathbf{u}} \, \mathcal{U}_{\mathbf{L}}^{\mathbf{Q}} \,,$

$$\mathbf{R} = \mathbf{1} + \tan\beta \left(\mathbf{E}_{\mathbf{g}} + \mathbf{E}_{\mathbf{u}} |\hat{\mathbf{h}}_{\mathbf{u}}|^2 + \dots \right),$$

Step 4: Express \mathcal{L}_Y in terms of the mass eigenstates

RGE induced operators proportional to $\mathcal{U}_{L}^{Q\dagger}h_{d}^{\dagger}h_{d}\mathcal{U}_{L}^{Q}$

Take the hermitian square of the modified Eq.(1) and solve for $\mathcal{U}_{L}^{Q\dagger}h_{d}^{\dagger}h_{d}\mathcal{U}_{L}^{Q}$ and then iterate

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 10

Step 5: Express the Higgs fields $\Phi_{1,2}^0$ in terms of their mass eigenstates $H_{1,2,3}$ in the presence of CP violation^a

$$\Phi_1^0 \rightarrow \frac{1}{\sqrt{2}} \left[O_{1i} H_i + i \left(\cos \beta G^0 - \sin \beta O_{3i} H_i \right) \right],$$

$$\Phi_2^0 \rightarrow \frac{1}{\sqrt{2}} \left[O_{2i} H_i + i \left(\sin \beta G^0 + \cos \beta O_{3i} H_i \right) \right],$$

^a Carena, Ellis, Pilaftsis, Wagner, 2000

$$B_s \rightarrow \mu^+ \mu^-$$
 in Supersymmetry – p. 1

Step 5: Combine all to construct the Higgs penguin

$$\mathcal{L}_{H_i\bar{d}d'} = -\frac{g_w}{2M_W} \sum_{i=1}^3 H_i \,\bar{d} \left(\hat{\mathbf{M}}_{\mathbf{d}} \, \mathbf{g}_{H_i\bar{d}d'}^L \, P_L + \mathbf{g}_{H_i\bar{d}d'}^R \, \hat{\mathbf{M}}_{\mathbf{d}'} P_R \right) d'$$

$$\mathbf{g}_{H_i \bar{d} d'}^L = \mathbf{V}^{\dagger} \mathbf{R}^{-1} \mathbf{V} \frac{O_{1i}}{\cos \beta} + \left(\mathbf{1} - \mathbf{V}^{\dagger} \mathbf{R}^{-1} \mathbf{V}\right) \frac{O_{2i}}{\sin \beta} - i \left(\mathbf{1} - \frac{1}{\cos^2 \beta} \mathbf{V}^{\dagger} \mathbf{R}^{-1} \mathbf{V}\right) \frac{O_{3i}}{\tan \beta}, \quad (2)$$

where $\mathbf{R} = \mathbf{1} + \tan \beta \left(\mathbf{E}_{\mathbf{g}} + \mathbf{E}_{\mathbf{u}} | \hat{\mathbf{h}}_{\mathbf{u}} |^2 + \dots \right)$

Dedes., Pilaftsis, 2003

Even with flavour and mass squark universality we observe Higgs mediated FCNCs!

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$
- If $\mathbf{R} \sim \mathbf{1}$ FCNCs are zero (GIM operative points)

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$
- If $\mathbf{R} \sim \mathbf{1}$ FCNCs are zero (GIM operative points)
- The other light quarks can in general give large contributions (like the top quark)

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$
- If $\mathbf{R} \sim \mathbf{1}$ FCNCs are zero (GIM operative points)
- The other light quarks can in general give large contributions (like the top quark)
- CP-violating effects are included

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$
- If $\mathbf{R} \sim \mathbf{1}$ FCNCs are zero (GIM operative points)
- The other light quarks can in general give large contributions (like the top quark)
- CP-violating effects are included
- Applied to number of observables, $\Delta M_{d,s}, \Delta M_K, \epsilon_K, B_s → \mu \mu..., CP-Asymmetries$

- Even with flavour and mass squark universality we observe Higgs mediated FCNCs!
- The Higgs Penguin is enhanced by $\tan^2 \beta$
- The Higgs Penguin is proportional to $V^{\dagger}R^{-1}V$
- If $\mathbf{R} \sim 1$ FCNCs are zero (GIM operative points)
- The other light quarks can in general give large contributions (like the top quark)
- CP-violating effects are included
- Applied to number of observables, $\Delta M_{d,s}, \Delta M_K, \epsilon_K, B_s → \mu \mu..., CP-Asymmetries$
- The method is limited to large $\tan\beta\gtrsim 40$ and $M_{\rm SUSY}>>M_Z$

A benchmark scenario

GIM operative points

ρ

Bounding the Higgs sector....

- $\tan \beta = 50$
- $\tilde{m} < 2.5 \text{ TeV}$
- Random SUSY parameter scan assuming neutralino LSP
- Max Br formula

Dedes, Huffman, 2004

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = 5 \times 10^{-7} \left(\frac{\tan\beta}{50}\right)^6 \left(\frac{650 \text{ GeV}}{M_A}\right)^4 + 1.0 \times 10^{-8}$$

^a Numerical codes are available for both approaches, (send an e-mail to Athanasios.Dedes@durham.ac.uk)

- $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is large in SUSY because of the tan β -enhanced Higgs penguin
- Two approaches exist : Diagrammatic and Effective Lagrangian^a

^a Numerical codes are available for both approaches, (send an e-mail to Athanasios.Dedes@durham.ac.uk)

- $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is large in SUSY because of the tan β -enhanced Higgs penguin
- Two approaches exist : Diagrammatic and Effective Lagrangian^a
- GIM operative points exist

^a Numerical codes are available for both approaches, (send an e-mail to Athanasios.Dedes@durham.ac.uk)

- $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is large in SUSY because of the tan β -enhanced Higgs penguin
- Two approaches exist : Diagrammatic and Effective Lagrangian^a
- GIM operative points exist
- Indirect probe of the heavy Higgs sector

^a Numerical codes are available for both approaches, (send an e-mail to Athanasios.Dedes@durham.ac.uk)

- $\mathcal{B}(B_s \to \mu^+ \mu^-)$ is large in SUSY because of the tan β -enhanced Higgs penguin
- Two approaches exist : Diagrammatic and Effective Lagrangian^a
- GIM operative points exist
- Indirect probe of the heavy Higgs sector

^a Numerical codes are available for both approaches, (send an e-mail to Athanasios.Dedes@durham.ac.uk)