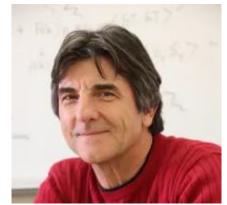
Detectability of contributions to the galaxy bispectrum

Samantha Rossiter PhD Physics Cosmology with large scale structure Supervised by Stefano Camera University of Turin Department of Physics

Expert Guidance

Stefano Camera University of Turin

Chris Clarkson Queen Mary University of London



Roy Maartens University of the Western Cape

Background papers

Local primordial non-Gaussianity in the relativistic galaxy bispectrum

Roy Maartens^{1,2}, Sheean Jolicoeur¹, Obinna Umeh², Eline M. De Weerd³, Chris Clarkson^{3,1}

Detecting the relativistic galaxy bispectrum

arXiv:1911.02398

Roy Maartens^{1,2}, Sheean Jolicoeur¹, Obinna Umeh², Eline M. De Weerd³, Chris Clarkson^{3,1,4}, Stefano Camera^{5,6,1} arXiv:2011.13660

Detectability of contributions to the Galaxy Bispectrum

- We investigate the potential of detecting contributions to the galaxy bispectrum
- In reality, the Universe is not Gaussian: Non-linear evolution of structures and gravitational dynamics, Primordial non-Gaussianity, etc.
- Require higher order statistics such as the Bispectrum

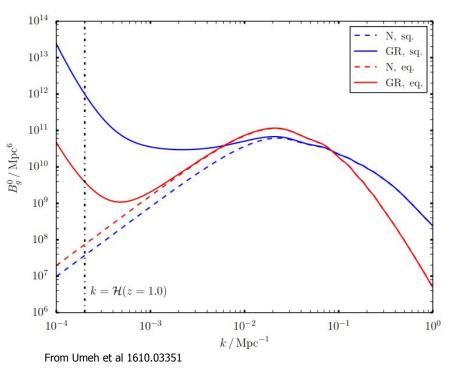
$$\langle \delta_g(\mathbf{k}_1) \delta_g(\mathbf{k}_2) \delta_g(\mathbf{k}_3) \rangle = (2\pi)^3 \mathcal{B}_g(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \delta^D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_2)$$

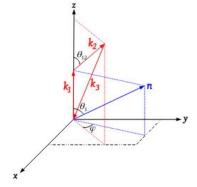
Relativistic effects and local primordial non-Gaussianity

- Implications of gravity mean what we observe is a distorted view of reality
- Source of non-Gaussianity in the observed galaxy distribution
- More accessible in the bispectrum than in the power spectrum
- Apart from RSD, relativistic corrections only appear at second order in perturbations

Relativistic Galaxy Bispectrum

$$B_g(\mathbf{k}_{123}) = \mathcal{K}^{(1)}(\mathbf{k}_1) \, \mathcal{K}^{(1)}(\mathbf{k}_2) \, \mathcal{K}^{(2)}(\mathbf{k}_{123}) \, P(\mathbf{k}_1) \, P(\mathbf{k}_2) + 2 \ \circlearrowleft$$
$$\mathcal{K}^{(i)} = \mathcal{K}^{(i)}_{\mathrm{N}} + \mathcal{K}^{(i)}_{\mathrm{GR}}$$

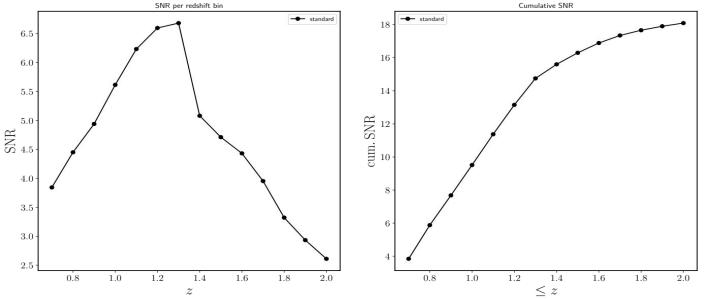




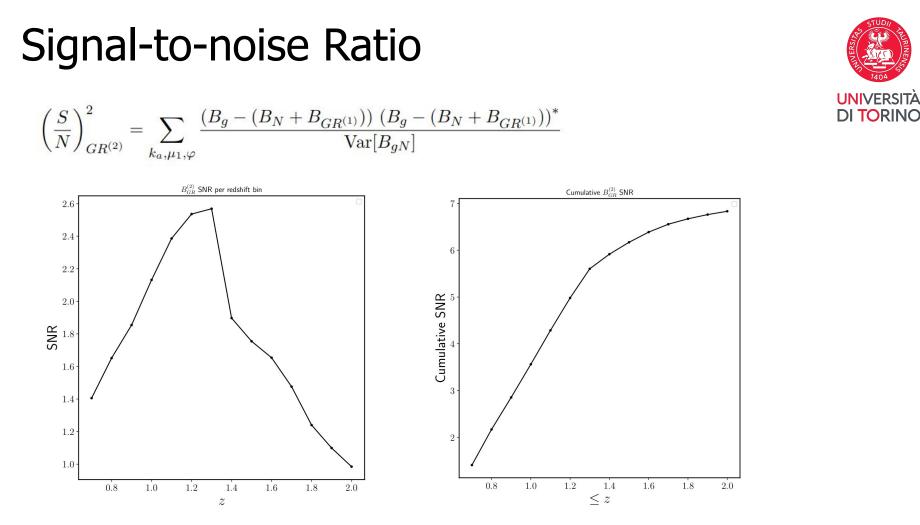
- Monopole of the bispectrum for squeezed and equilateral triangles
- Shows a significant difference at larger scales i.e small k
- This paper also demonstrated how these effects can mimic signatures of PNG

Signal-to-noise Ratio

 $\left(\frac{S}{N}\right)_{\rm D}^2 = \sum_{k_a,\,\mu_1,\,\varphi} \frac{B_{g{\rm D}} \, B_{g{\rm D}}^*}{\operatorname{Var}[B_{g{\rm N}}]}$



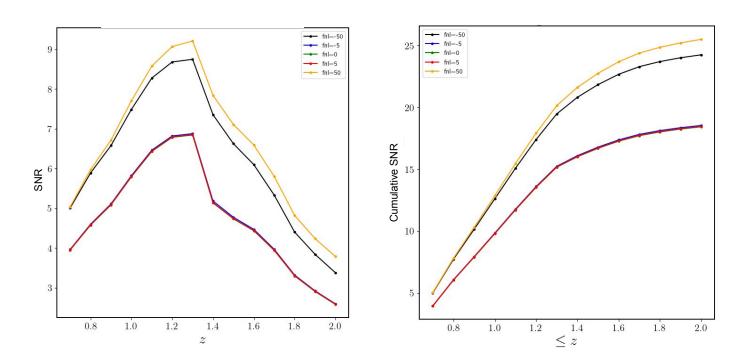
Following Martins et al 1911.02398



Local Primordial Non-Gaussianity

• Contributions from local Primordial non-Gaussianity (PNG)

 $\mathcal{K}^{(i)} = \mathcal{K}_{\mathrm{N}}^{(i)} + \mathcal{K}_{\mathrm{GB}}^{(i)} + \mathcal{K}_{\mathrm{nG}}^{(i)}$



Marginal errors

• We want to see how precisely we can measure the local PNG and relativistic contributions

Fisher matrix formalism:

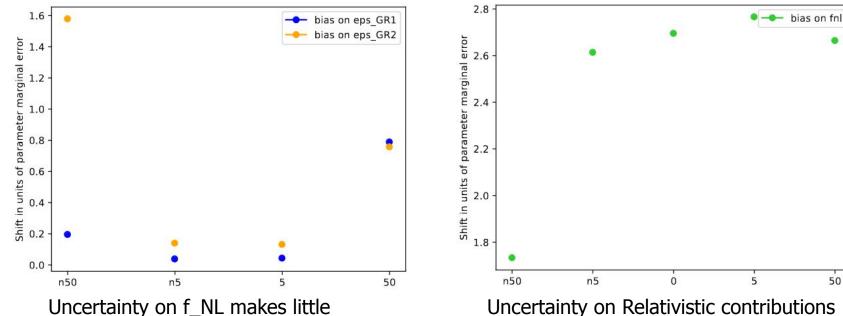
$$F_{\alpha\beta} = \sum_{z,k_a,\mu_a,\varphi} \frac{\partial_{(\alpha}B_g \,\partial_{\beta)}B_g^*}{\operatorname{Var}[B_g, B_g]}$$

• From this we can get the marginal errors on our parameters $\theta = \{\epsilon_{GR}^{(1)}, \epsilon_{GR}^{(2)}, f_{NL}\}$

 $\sigma_{\alpha} = \sqrt{\left(\mathsf{F}^{-1}\right)_{\alpha\alpha}}$

- We obtain the marginal errors:
 - \circ $\sigma_{\epsilon}GR1\sim0.1$, consistent with the literature
 - \circ $\sigma_{\epsilon}GR2\sim0.25$, novel result
 - \circ σ_{fnl} ~3, consistent with the literature

Bias on parameters



Uncertainty on f_NL makes little difference to the observed value we get on the relativistic contributions Uncertainty on Relativistic contributions would impact our observed value of fnl significantly.

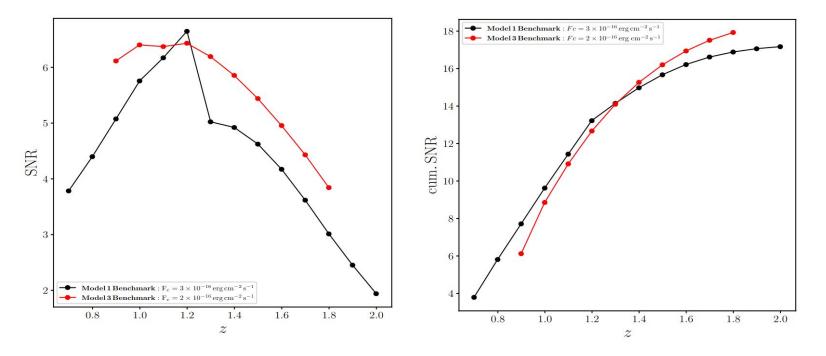
UNIVERSITÀ DI TORINO

Thank you. Any questions?

Backup slides

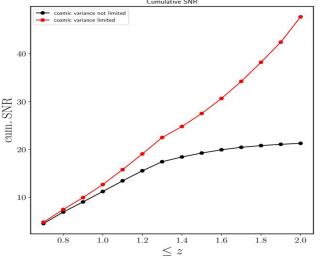
Signal-to-noise Redone

- Discontinuity in luminosity function causes steep drop in signal at $z \sim 1.3$
- Check against an improved luminosity model with updated Euclid specs

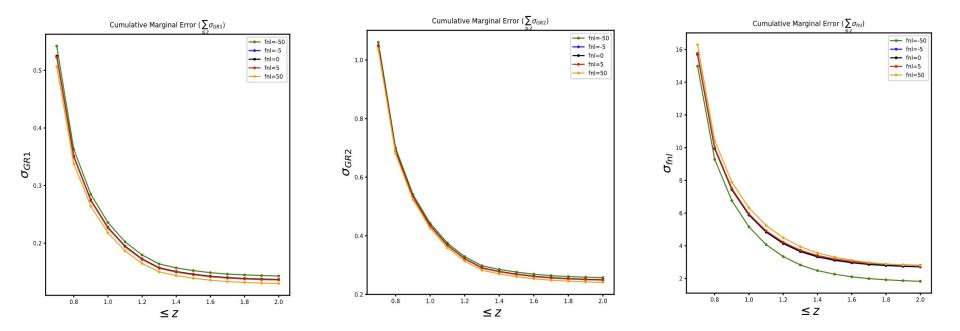


Cosmic Variance and shot noise

- Our local universe is not homogeneous, this causes an uncertainty in observational estimates of average galaxy densities
- As we go to higher redshift, this variance decreases as we have access to larger volumes
- However, at these larger volumes, the number of galaxies is sparse and so the signal is suppressed, we call this galaxy shot noise.
- Here we showcase the limitation of galaxy shot noise on the SNR of the Doppler bispectrum



Cumulative Marginal errors



Constraints on parameter values

