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Introduction

Already all the information we have about Dark Matter ( existence,
abundance...) comes from astrophysical and cosmological observations.

Can we get additional information on DM dynamics from cosmology?

Can we exploit new data from galaxy surveys?




Dark fifth forces — Minimal model
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Dark fifth forces — Minimal model
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Background dynamics

Starting point: Klein-Gordon equation for ¢
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Background dynamics

Starting point: Klein-Gordon equation for ¢

Scalar evolution sourced by DM
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Background dynamics

Starting point: Klein-Gordon equation for ¢
Scalar evolution sourced by DM
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Cosmological perturbations
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Cosmological perturbations
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Boltzmann equations
Background correction
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Cosmological perturbations

Om = [xOx + (1- fx)éb

Boltzmann equations Op = 5)( — Op
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Cosmological perturbations

Linear solution
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e Background corrections enhance the growth
* No new spatial featuresin §,,, at linear level
* Logarithmically enhanced growth of 9.,

e Growing relative perturbations

* Different scalings with the DM fraction
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Cosmological perturbations

Linear solution
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Cosmological perturbations

Number of modes accessible from galaxy surveys grows at least as k3 : lot of information in non-linear
observables (1-loop power spectrum, bispectrum ...).
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Cosmological perturbations

Number of modes accessible from galaxy surveys grows at least as k3 : lot of information in non-linear
observables (1-loop power spectrum, bispectrum ...).

Non-linear solution
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e Same ansatz asin ACDM
 Same ACDM kernels at O(Bfi log a)
* New kernels arise at at O(3f, ) — relevantif fy <1/8



Conclutions

Modified background Linear dynamics
e Affects physical distances * Log enhanced growth of

* Enhances growth of matter perturbations
perturbations \ / e Growing relative modes
a . )
Dark fifth
forces

Non-linear dynamics

e Larger power at non-linear scales

* New spatial features prominent for
small DM fractions
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