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Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well
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The ultimate sin…

• The theme of this talk is self-interaction. I’ll discuss two 
aspects of it:

• Neutrino self-interactions and their impact on LSS.

• Dark matter self-interactions and their impact on very 
small scales. 
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The importance of neutrinos in 
cosmology

• Deep in the radiation-dominated epoch, neutrinos 
account for 41% of the energy density of the Universe. 

• Prior to the epoch of recombination (when neutral atoms 
form in the Universe), Standard Model neutrinos are the 
only free-streaming radiation in the Universe.

• Detailed evolution of matter and CMB fluctuations are 
sensitive to this radiation free-streaming fraction.



Free-streaming Radiation and the CMB

Bashinsky & Seljak (2004)
Baumann et al. (2016)

Neutrinos give rise to a phase shift and amplitude suppression to 
CMB fluctuations 
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Cyr-Racine & Sigurdson (2014)

Baryon-photon acoustic wave

A Cosmological Limit on Neutrino Self-Interactions
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In the standard model neutrinos are assumed to have streamed across the Universe since they

last scattered at the weak decoupling epoch when the temperature of the standard-model plasma

was ⇠MeV. However, the presence of nonstandard physics in the neutrino sector could alter this

simple picture and delay neutrino free-streaming until a much later epoch. We use observations of

the Cosmic Microwave Background (CMB) to constrain the strength of neutrino self-interactions G⌫

and put limits on new physics in the neutrino sector from the early universe. The recent improvement

in accuracy of CMB measurements made by the Planck satellite and high-l experiments is critical

in obtaining this constraint. We show that cosmological data allows neutrino free-streaming to

be delayed until the Universe has cooled to a temperature close to 35 eV, almost five orders of

magnitude lower than in the standard cosmological paradigm. Nevertheless, these data constrain

neutrino physics at an e↵ective energy scale ⇤⌫ & 30 MeV well above the typical energy scale

of neutrinos when the decouple. While we discuss a specific scenario in which such a late onset of

neutrino free-streaming could occur our constraint on the neutrino visibility function is very general.

PACS numbers: 98.80.-k

INTRODUCTION Neutrinos are the most elusive
components of the standard model (SM) of particle
physics. Their tremendously weak interactions with
other SM fields render measurements of their fundamen-
tal properties very challenging. At the same time, the
existence of neutrino mass [? ] constitutes one of the
most compelling evidence for physics beyond the SM, and
makes the neutrino sector a prime candidate for searches
of such new physics. In recent years, cosmology has pro-
vided some of the most stringent constraints on neutrino
properties, most notably the sum of their masses and
their e↵ective number [? ? ? ]. Can cosmological data
can inform us about other aspects of neutrino physics?
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One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the

very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-

cal data inform us about possible interactions in the neu-

trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?

? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and

for
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In the standard model neutrinos are assumed to have streamed across the Universe since they

last scattered at the weak decoupling epoch when the temperature of the standard-model plasma

was ⇠MeV. However, the presence of nonstandard physics in the neutrino sector could alter this

simple picture and delay neutrino free-streaming until a much later epoch. We use observations of
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neutrino free-streaming could occur our constraint on the neutrino visibility function is very general.
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INTRODUCTION Neutrinos are the most elusive
components of the standard model (SM) of particle
physics. Their tremendously weak interactions with
other SM fields render measurements of their fundamen-
tal properties very challenging. At the same time, the
existence of neutrino mass [? ] constitutes one of the
most compelling evidence for physics beyond the SM, and
makes the neutrino sector a prime candidate for searches
of such new physics. In recent years, cosmology has pro-
vided some of the most stringent constraints on neutrino
properties, most notably the sum of their masses and
their e↵ective number [? ? ? ]. Can cosmological data
can inform us about other aspects of neutrino physics?
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One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model

this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-

cal data inform us about possible interactions in the neu-

trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?

? ? ? ? ], neutrinos were modeled as a fluid-like [?
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FIG. 3: a) Adiabatic Green’s functions for neutrino (solid) and photon (dashed) number density perturbations in the radiation
era. The neutrino fraction, Rν , of the radiation density is assumed infinitesimal. b) Adiabatic Green’s functions for the
gravitational potentials Φ± ≡ (Ψ ± Φ)/2 in the radiation era. The solid and dashed curves are the sums of the O(R0

ν) and
O(Rν) terms for three neutrino species. The dotted line is Φ+ = Φ for Rν → 0.

appearing on its right hand side is the one provided
by the photon density perturbation (112). As for the
left hand side, where Ψ = Φ+ + Φ−, the only delta-
function comes from the double derivative of the term
(

χ2 − 1
3

)

pΦ θ
(

1√
3
− |χ|

)

in eq. (106). The equality of

these contributions requires

pΦ = −
√

3(1 − Rν)pγ . (114)

Substituting eq. (106) in (113) and eliminating pΦ with
the relation above, we obtain

pγ =
1

1 − 2Rν

[

3

2
ζin −

∫ 1

−1
dχF−(χ)

]

. (115)

Calculating pΦ from the last two equations is somewhat
easier than from eq. (107).

Now we have all the analytic tools to analyze how neu-
trinos affect CMB perturbations. The evolution of metric
perturbations without neutrinos is given by eqs. (108–
109). Then the photon density Green’s function follows
from eqs. (112, 115) as
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3 θ
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− 1
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.

(116)

Its Fourier transform (93) leads to the photon density
Fourier modes in the radiation era:

d(Rν→0)
γ (τ, k) = −3ζin

(

2 sinϕs

ϕs
− cosϕs

)

, (117)

with ϕs = kτ/
√

3. In particular, without neutrinos the
photon density modes oscillate under the acoustic hori-
zon (ϕs # 1) as a pure ϕs cosine.

The predictions for both the phase and the amplitude
of the photon mode oscillations differ when the gravity

of neutrino perturbations is taken into account. The os-
cillations of the Fourier modes on subhorizon scales are
described by the singular terms in the real space Green’s
functions. For the photon density (112) these are the
δ-function and (χ± 1√

3
)−1 singularities at χ = ± 1√

3
:

d̄γ(χ) = pγ δD

(

|χ|−
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3

)

+
2rγ

χ2 − 1
3

+ . . . , (118)

where

rγ = Φ̄+(1/
√

3) (119)

and the dots stand for more regular terms. The Fourier
transform of eq. (118) follows from the first and third
lines of Table II, where n is set to 0 and 1, as

dγ(τ, k) = 2
(

pγ cosϕs − rγπ
√

3 sinϕs

)

+ O(ϕ−1
s ) . (120)

A non-zero phase shift with respect to the cosϕs oscil-
lations is generated whenever rγ $= 0. By eq. (119) this
can happen for adiabatic perturbations if only some per-
turbations propagate faster than the sound speed in the
photon fluid, and thus are able to generate metric pertur-
bations beyond the acoustic horizon. This is the case for
the neutrino perturbations, propagating with the speed
of light, Fig. 3 a).

The values of pγ and rγ in eq. (118) are calculated
in O(Rν ) order in Appendix C. With its results (C6)
and (C7), the mode (120) can be presented as

dγ(τ, k) = 3ζin(1 + ∆γ) cos (ϕs + δϕ) + O(ϕ−1
s ) , (121)

where

∆γ % − 0.2683Rν + O(R2
ν) ,

δϕ % 0.1912 πRν + O(R2
ν) .

(122)

As demonstrated in Fig. 4 a), our theoretical predictions
are in excellent agreement with numerical calculations
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FIG. 2. Snapshot of neutrino and photon density fluctuations in configuration space at a fixed redshift. The black dot-dashed
line shows the standard free-streaming neutrino fluctuation while the green dashed line displays the corresponding photon
density fluctuation. The solid blue and red dotted lines show the density fluctuation of self-interacting neutrinos and the
corresponding photon perturbation, respectively. These two lines lie on top of one another since both neutrinos and photons
behave as tightly-coupled fluids at the epoch shown here. The di↵erence between the green dashed and the red dotted lines
readily illustrates the phase shift and amplitude suppression of the photon fluctuation associated with free-streaming neutrinos.
Here we have adopted a Planck cosmology [3].

neutrinos solely couple to CMB photons via the gravita-
tional potentials, which themselves depend on integrals

of the neutrino distribution function. While it would be
interesting to study and quantify the impact of neutrino
spectral distortions on the CMB (see e.g. [57]), we leave
this possibility to future work and assume the form of
Eqs. (4) and (5) to be valid throughout neutrino decou-
pling.

We solve Eqs. 4 and 5 numerically together with the
standard perturbation equations for the photons, baryons
and dark matter using a modified version of the code
CAMB [58]. At early times, the tightly-coupled neutrino
equations are very sti↵ and we use a tight-coupling ap-
proximation which sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and
F⌫l = 0 for l � 3 [59]. We note that the neutrino opacity
is related to the commonly used viscosity parameter c2vis
though the relation c2vis = (1/3)(1�(15/8)⌧̇⌫↵2F⌫2/(✓⌫+
k�)). As long as neutrinos form a tightly-coupled fluid,
the second term is very close to unity and c2vis approaches
zero. After, the onset of neutrino free-streaming, the sec-

ond term becomes vanishingly small and c2vis ! 1/3. This
illustrates that modeling nonstandard neutrino physics
with a constant c2vis 6= 1/3 has no intuitive meaning in
terms of simple particle scattering, hence shedding doubt
on the usefulness of this parametrization.

We compare in Fig. 2 the evolution in configuration
space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctua-
tions [13, 19, 20]. For each Fourier mode of the photon
fluctuations, the magnitude of these two e↵ects is directly
proportional to the free-streaming fraction of the total
radiation energy density when the Fourier mode enters
the Hubble horizon. If neutrino free-streaming is delayed
due to their self-interaction until redshift z⌫⇤, Fourier
modes of photon fluctuations entering the horizon before
z⌫⇤ would not be a↵ected by the standard shift in am-
plitude and phase. On the other hand, the amplitude of

Free-
streaming 
neutrinos 
propagate 
faster than 
baryon-
photon 
sound wave

Photons (wo/ standard neutrinos)
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neutrinos solely couple to CMB photons via the gravita-
tional potentials, which themselves depend on integrals

of the neutrino distribution function. While it would be
interesting to study and quantify the impact of neutrino
spectral distortions on the CMB (see e.g. [57]), we leave
this possibility to future work and assume the form of
Eqs. (4) and (5) to be valid throughout neutrino decou-
pling.

We solve Eqs. 4 and 5 numerically together with the
standard perturbation equations for the photons, baryons
and dark matter using a modified version of the code
CAMB [58]. At early times, the tightly-coupled neutrino
equations are very sti↵ and we use a tight-coupling ap-
proximation which sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and
F⌫l = 0 for l � 3 [59]. We note that the neutrino opacity
is related to the commonly used viscosity parameter c2vis
though the relation c2vis = (1/3)(1�(15/8)⌧̇⌫↵2F⌫2/(✓⌫+
k�)). As long as neutrinos form a tightly-coupled fluid,
the second term is very close to unity and c2vis approaches
zero. After, the onset of neutrino free-streaming, the sec-

ond term becomes vanishingly small and c2vis ! 1/3. This
illustrates that modeling nonstandard neutrino physics
with a constant c2vis 6= 1/3 has no intuitive meaning in
terms of simple particle scattering, hence shedding doubt
on the usefulness of this parametrization.

We compare in Fig. 2 the evolution in configuration
space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctua-
tions [13, 19, 20]. For each Fourier mode of the photon
fluctuations, the magnitude of these two e↵ects is directly
proportional to the free-streaming fraction of the total
radiation energy density when the Fourier mode enters
the Hubble horizon. If neutrino free-streaming is delayed
due to their self-interaction until redshift z⌫⇤, Fourier
modes of photon fluctuations entering the horizon before
z⌫⇤ would not be a↵ected by the standard shift in am-
plitude and phase. On the other hand, the amplitude of
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Neutrinos and the CMB

• This phase shift and amplitude suppression are very robust 
signatures of free-streaming radiation as they rely only on 
gravitational interactions. 

• Key question: Is this simple picture consistent with 
observations? Or is yet-unknown neutrino physics 
modifying this picture?

• The simplest phenomenology that can suppress neutrino 
free-streaming is neutrino self-interactions. 2

act only via gravity. In this paper we investigate a class
of models which feature extra, non-standard, neutrino in-
teractions. In these models, neutrinos interact strongly
with a new scalar boson, which is brought into thermal
equilibrium though its coupling to the neutrinos. Rather
than free-streaming, the neutrinos form a tightly coupled
fluid with the new scalar.

These models generically have non-standard values for
N eff

ν , but perhaps more interestingly, the absence of neu-
trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled
fluid, they are fully characterized by density and ve-
locity perturbations, and anisotropic stress is negligible.
In [21, 22] it was shown that the current Wilkinson Mi-
crowave Anisotropy Probe (WMAP) CMB measurements
already have some sensitivity to this effect. This is sig-
nificant because in addition to being able to infer the
presence of relativistic degrees of freedom, we may now
also be able to say something about the interactions of
the particles which make up that relativistic energy den-
sity.

In this paper we address the question: how much rel-
ativistic energy density is there, and what fraction of it
must consist of weakly interacting particles? We answer
this question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other
with bosons, through tree level scalar or pseudo-scalar
couplings of the form

Lνφ = hijνiνjφ + gijνiγ5νjφ, (1)

where the boson φ is taken to be light or massless1. Such
couplings arise in Majoron-like models, viable examples
of which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a
low scale, which occurs late in the history of the universe
[19, 25]. In order to be as model independent as possi-
ble, we assume the new couplings are fixed independently
of the neutrino mass. We also make no distinction be-
tween g or h type couplings, nor between neutrinos and
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson

1 Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].

ν φ

ν φ
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ν ν
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FIG. 1: The interactions that keep the neutrinos and the
scalar coupled. If the scalar is heavier than mν , the process
ν ↔ νφ is replaced by φ ↔ νν.

decay [27] limits are |g| ! 10−2. Neutrinoless double
beta decay sets a limit gee < 10−4 [28], but does not
constrain other elements of the coupling matrix gαβ.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g ∼ 10−5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless φ boson, scalar couplings could medi-
ate long-range forces with possible cosmological conse-
quences [30, 31], while pseudo-scalar couplings mediate
spin-dependent long-range forces, which have no net ef-
fect on an unpolarized medium2. However, if the φ boson
has even a tiny mass H0 " mφ " 1 eV the interaction is
short ranged and insignificant over cosmological distance
scales.

The φ boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ν − φ sys-
tem may stay in thermal contact until late times. The
processes involved, shown in Figure 1, are νφ ↔ νφ,
νν ↔ φφ, νν ↔ νν, and either ν ↔ νφ or νν ↔ φ,
depending on whether the scalar mass, mφ, is smaller or
larger than the neutrino mass, mν

3. For sufficiently large
couplings, the ν–φ system will remain in thermal contact
until the temperature drops below mν or mφ. At this
point the heavier of the two particles will annihilate or
decay.

The possibility of altering the relativistic energy den-
sity through neutrino decay has been considered in [33]4,

2 For pseudo-scalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3 We set all three neutrino species to a common mass mν , with

mν !

√

δm2
sol

,
√

δm2
atm . When this approximation does not

hold, the effects of neutrino mass are negligible in present cos-
mological data.

4 See also, Ref. [34], which studies the case of a scalar boson de-
caying into neutrinos, thus distorting the usual thermal neutrino
distribution. Related scenarios, in which hot dark matter is pro-
duced by the decay of heavier particles, are examined in Ref. [35].
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TABLE I. Scattering and annihilation processes involving
electron neutrinos; the four-momentum of the incoming elec-
tron neutrino is denoted by p; the four-momentum of the other
incoming particle is q; the four-momentum of the outgoing v,
(or lepton) is p', and the four-momentum of the outgoing an-
tilepton is q' (see Fig. 1). p and ~ neutrinos are denoted by v;
(i =p, ~). The invariants s, t, and u are defined by
s =(p+q) =2p q, which is the total energy squared in the
center-of-mass (c.m. ) frame; t =(p —p') =—2p p' is the four-
momentum transfer between the incoming electron neutrino
and outgoing lepton; and u =(p —q') =—2p-q' is the four-
momentum transfer between the incoming electron neutrino
and outgoing antilepton. In computing the matrix-elements
squared, we have assumed that all leptons are ultrarelativistic,
which implies that s+t+u =0; GF-—1.17X10 ' GeV is the
Fermi constant, a =(2 sin~Os + 1) =2.13, b =(2 sin 0~)
=0.212, and sin 8~-—0.23. Both neutral- and charged-current
interactions have been included.

Process

Annihilation
v +7, e +e+
v, +v, —+v;+v;

8GF(bt +au )
8GF'u '

Scattering

v, +e ~v, +e
v, +e+~v, +e
Ve+ Ve ~ve +Ve
Ve +Ve ~V~ +Ve

v, +v;~v, +v;
Ve+ V; ~ve+Vi

86F(as +bu )
8GF(bshe+au )

8GF~s'
86 (4u')
86 s
8GF~u 2

thermal contact with the electromagnetic plasma and
other neutrinos species are 2~2 scattering and annihila-
tion processes that involve neutrinos and/or antineutri-
nos and electrons and/or positrons. Neutrino-nucleon in-
teractions are extremely unimportant because of the scar-
city of nucleons, only about one nucleon per 10 elec-
trons, positrons, neutrinos, and antineutrinos.
Scattering and annihilation processes involving elec-

trons and positrons can heat neutrinos, v+e*+ v+e +—

and v+v~e +e, while scattering and annihilation
processes involving only neutrinos can only thermalize
the neutrino distributions, e.g., v, +v„~v, +v„or v, +v,
~v, +v,. All the annihilation and scattering processes
involving electron neutrinos and their matrix-elements
squared times symmetry factors are displayed in Table I
[7]; the analogous compilation for p and r neutrinos is
given in Table II. In addition, our notation is explained
in the tables and illustrated in Fig. 1.
The p- and ~-neutrino phase-space distribution func-

tions are identical, but not equal to that of the electron
neutrino, since electron neutrinos have both neutral- and
charged-current interactions. We shall assume that the
chemical potentials of all lepton species are very small
ipse « T, which is known for e 's and is expected for all
the neutrino species. This implies that the phase-space
distribution functions of particles and their antiparticles
are identical. This and the fact that the v„and v, distri-
butions are identical means that we need only track the

v+v, e +e
Vi+ Vt ~ve +Ve

v;+vr ~vj+vj

862(bt 2+ cu 2)
8G'u'
86FQ

Scattering
v;+e ~v;+e
v, +e+~vi+e+
v;+ve~v;+ vq

V; +Ve ~Vt +Ve

vi+ vi ~vi+ v,
v;+ v)~ vi+ v
v;+v;~v;+v;
vi +vj ~vi +vj

86F(cs +bu )
86F(bs'+ cu ')

862s2
862u'
862s'
8G
8G'(4 ')
86 u

phase-space distribution functions of electron and muon
neutrinos.
We are now ready to derive the Boltzmann equations

that govern the small distortions to the neutrino phase-
space distribution functions that develop due to e—heat-
ing. Around the time that "neutrinos decouple, " the
temperature of the electromagnetic plasma begins to de-
crease more slowly than R '(t), as e+— pairs become
fewer in number and transfer their entropy to photons
and the remaining e+—pairs. If neutrinos had completely
decoupled by this time, their temperature would simply
decrease as R '(t) and would be dropping relative to the
photon temperature. It is this small temperature
difference that drives residual neutrino-electron interac-
tions to heat the neutrinos. By calculating how well neu-
trinos are able to track the relatively rising photon tem-
perature, we are able to follow the process of neutrino
decoupling.
With these facts in mind, we write the phase-space dis-

P q
(outgoing neutrino or lepton) {other outqoin(j particle)

2
+qI =2p. q
-p'j =-~p-p'I 2

-q' I =-~p.q

P
(incoming neutrino)

q
(other incoming particle)

FIG. 1. The labeling of four-momenta for neutrino interac-
tions, cf. Tables I and II, and our definitions of the Mandelstam
variables s, t, and u.

TABLE II. Same as Table I, except for p and ~ neutrinos.
The four-momenta are denoted in the analogous manner: p is
the four-momentum of the incoming v;; q is the four-
momentum of the other incoming partijle; p' is the four-
momentum of the outgoing v; (or lepton); and q' is the four-
momentum of the outgoing particle that scatters with the v; (or
antilepton) (see Fig. 1); s =(p+q), t =(p —p'), u =(p —q')',
i,j =p, ~, iWj, and c =(2sin'0~ —1) =0.292.

Process

Annihilation

4-Fermion Interaction stronger than Fermi constant
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act only via gravity. In this paper we investigate a class
of models which feature extra, non-standard, neutrino in-
teractions. In these models, neutrinos interact strongly
with a new scalar boson, which is brought into thermal
equilibrium though its coupling to the neutrinos. Rather
than free-streaming, the neutrinos form a tightly coupled
fluid with the new scalar.

These models generically have non-standard values for
N eff

ν , but perhaps more interestingly, the absence of neu-
trino free-streaming leaves a distinctive signature in the
CMB. If the neutrinos are part of a tightly coupled
fluid, they are fully characterized by density and ve-
locity perturbations, and anisotropic stress is negligible.
In [21, 22] it was shown that the current Wilkinson Mi-
crowave Anisotropy Probe (WMAP) CMB measurements
already have some sensitivity to this effect. This is sig-
nificant because in addition to being able to infer the
presence of relativistic degrees of freedom, we may now
also be able to say something about the interactions of
the particles which make up that relativistic energy den-
sity.

In this paper we address the question: how much rel-
ativistic energy density is there, and what fraction of it
must consist of weakly interacting particles? We answer
this question in general, and also in the context of specific
models.

II. INTERACTION MODEL

Although the results of our analysis are valid in a wider
context than the interaction model we now describe, we
examine in this section a simple physical model of non-
standard neutrino interactions for illustrative purposes.

We consider the coupling of neutrinos to each other
with bosons, through tree level scalar or pseudo-scalar
couplings of the form

Lνφ = hijνiνjφ + gijνiγ5νjφ, (1)

where the boson φ is taken to be light or massless1. Such
couplings arise in Majoron-like models, viable examples
of which have been discussed in Ref. [24]. Recently, these
models have been investigated in the context of late-time
phase transitions, whereby the neutrinos acquire their
masses via a symmetry breaking phase transition at a
low scale, which occurs late in the history of the universe
[19, 25]. In order to be as model independent as possi-
ble, we assume the new couplings are fixed independently
of the neutrino mass. We also make no distinction be-
tween g or h type couplings, nor between neutrinos and
antineutrinos.

Existing bounds on these new couplings are extremely
weak. For example, the solar neutrino [26] and meson

1 Couplings of neutrinos to new heavy bosons are tighty con-
strained [23].

ν φ

ν φ

ν ν

ν ν

ν

φ

ν

φ

ν

ν

ν

ν

ν
ν

φ

FIG. 1: The interactions that keep the neutrinos and the
scalar coupled. If the scalar is heavier than mν , the process
ν ↔ νφ is replaced by φ ↔ νν.

decay [27] limits are |g| ! 10−2. Neutrinoless double
beta decay sets a limit gee < 10−4 [28], but does not
constrain other elements of the coupling matrix gαβ.
Supernova constraints exclude a narrow (and model-
dependent) range of couplings around g ∼ 10−5 [29].
Even couplings which are much smaller than these limits
can have significant cosmological consequences.

For a massless φ boson, scalar couplings could medi-
ate long-range forces with possible cosmological conse-
quences [30, 31], while pseudo-scalar couplings mediate
spin-dependent long-range forces, which have no net ef-
fect on an unpolarized medium2. However, if the φ boson
has even a tiny mass H0 " mφ " 1 eV the interaction is
short ranged and insignificant over cosmological distance
scales.

The φ boson can be brought into thermal equilibrium
through its coupling to the neutrinos, and the ν − φ sys-
tem may stay in thermal contact until late times. The
processes involved, shown in Figure 1, are νφ ↔ νφ,
νν ↔ φφ, νν ↔ νν, and either ν ↔ νφ or νν ↔ φ,
depending on whether the scalar mass, mφ, is smaller or
larger than the neutrino mass, mν

3. For sufficiently large
couplings, the ν–φ system will remain in thermal contact
until the temperature drops below mν or mφ. At this
point the heavier of the two particles will annihilate or
decay.

The possibility of altering the relativistic energy den-
sity through neutrino decay has been considered in [33]4,

2 For pseudo-scalar couplings, two-boson exchange can mediate
extremely weak spin-independent forces [32].

3 We set all three neutrino species to a common mass mν , with

mν !

√

δm2
sol

,
√

δm2
atm . When this approximation does not

hold, the effects of neutrino mass are negligible in present cos-
mological data.

4 See also, Ref. [34], which studies the case of a scalar boson de-
caying into neutrinos, thus distorting the usual thermal neutrino
distribution. Related scenarios, in which hot dark matter is pro-
duced by the decay of heavier particles, are examined in Ref. [35].
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] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in
detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.

NEUTRINO INTERACTIONS In addition to
their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g2⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X
we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.

The key quantity characterizing the interactions in
the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G2

e↵T
2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.

The opacity of the neutrino medium e↵ectively defines
a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.

EVOLUTION OF FLUCTUATIONS To deter-

FIG. 1: Visibility function for self-interacting neutrinos for

di↵erent values of the e↵ective coupling constant Ge↵ . Here,

we assume three neutrinos species. Note that that some of

the visibility functions have been rescale to fit in the frame.

z = 5 ¥ 107

Geff = 10-4 MeV-2
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FIG. 2: Evolution of neutrino and photon fluctuations in

configuration space for both self-interacting neutrinos (blue

solid line) and standard free-streaming neutrinos (black dash-

dotted line). Here we have adopted a Planck cosmology [? ].

The phase shift and amplitude suppression of the photon fluc-

tuation associated with free-streaming neutrinos are readily

noticeable.

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density
and velocity fluctuations of the neutrinos are una↵ected
by the self-interaction, the moments with l � 2 are cor-
rected by a damping term proportional to ⌧̇⌫ which ef-
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ȧ

a
✓DM � c

2
DMk

2
�DM � k

2
 = �DM(✓REL � ✓DM)

H
2 =

8⇡G

3
⇢tot (16)

�MFP >> H
�1 (17)

G⌫ = g
2
⌫/M

2
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One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-

cal data inform us about possible interactions in the neu-

trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?

? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in

detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.
NEUTRINO INTERACTIONS In addition to

their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g

2
⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X

we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.
The key quantity characterizing the interactions in

the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G

2
e↵T

2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.
The opacity of the neutrino medium e↵ectively defines

a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.
EVOLUTION OF FLUCTUATIONS To deter-

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density
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excluded by laboratory searches for rare K decays
and for neutrinoless double-beta decay, except for
a small island for the ⌫µ coupling. This means
that the mass-eigenstate neutrinos only interact via
their ⌫⌧ components.

This work is organized as follows: Sec. II demonstrates
that a light new particle is required to generate the in-
teraction in Eq. (1) with appropriate coupling strength;
Sec. III presents the cosmological bounds on this sce-
nario; Sec. IV discusses the corresponding laboratory
constraints; Sec. V shows how Eq. (1) can arise in UV
complete models; finally, Sec. VI o↵ers some concluding
remarks.

II. THE NECESSITY OF A LIGHT MEDIATOR

The Boltzmann equations used in Refs. [18–20, 22]
assume that left-handed (LH), mass-eigenstate neutri-
nos participate in elastic 2 ! 2 scattering processes.
They also assume that the interactions in Eq. (1) in-
volve constant and flavor-universal values of Ge↵ during
all epochs relevant for the CMB. The largest CMB mul-
tipoles observed by Planck correspond to modes that en-
tered the horizon when the universe had a temperature
of < 100 eV.This temperature sets the characteristic en-
ergy scale of scattering reactions during this epoch, and
it is important that the form of the Lagrangian shown in
Eq. (1) is valid in this regime. At higher energies, how-
ever, this description can break down. In this section, we
therefore emphasize the need to introduce new particle
content to study laboratory and early universe processes
that occur at energies ⇠ O(MeV).

As noted in Refs. [17–20], the operator in Eq. (1) is
non-renormalizable, and thus is necessarily replaced by
a di↵erent interaction with new degree(s) of freedom at
some energy scale higher than the energies probed by the
CMB (see Ref. [23] for a review). Since Ge↵ in Eq. (1) is
momentum-independent, we will assume this interaction
arises from “integrating out” a particle � with mass m�

and a perturbative coupling to neutrinos g�:

Lphen � �
1

2
m

2

��
2 +

1

2
(g↵�

� ⌫↵⌫�� + h.c.), (3)

where ⌫↵ are two-component left-handed neutrinos, ↵

and � are flavor indices and the subscript “phen” indi-
cates that we will use this Lagrangian for our phenomeno-
logical analysis. In Eq. (3) we have assumed that � is a
real scalar without loss of essential generality. In par-
ticular, our conclusions remain una↵ected if � is a CP-
odd or complex scalar. We focus on a scalar mediator
here for clarity; introducing a new vector force instead,
for example, follows the same reasoning but comes with
additional, stronger constraints discussed in more detail
below. We also explicitly allow for generic couplings g

↵�
�

between di↵erent neutrino species, and discuss implica-
tions of di↵erent choices of g

↵�
� below.

q ⌧ m�

Ge↵

⌫ ⌫ ⌫

⌫

⌫

⌫ ⌫ ⌫

g� g�

�

FIG. 1. Cartoon for how renormalizable interactions in
Eq. (3) (left diagram) yield the contact interaction in Eq. (1)
(right diagram) at low energies; flavor indices are suppressed.

Using Eq. (3), we see that the ⌫⌫ ! ⌫⌫ scattering
amplitude M is always proportional to two powers of g�

multiplying the � propagator, as shown schematically in
Fig. 1. If the momentum transfer q satisfies |q

2
| ⌧ m

2

�,
we have

M /
g
2

�

m
2

� � q2
! Ge↵

 
1 +

q
2

m
2

�

+ · · ·

!
, (4)

where we have suppressed flavor indices and defined

Ge↵ '
g
2

�

m
2

�

= (10 MeV)�2

⇣
g�

10�1

⌘2
✓
MeV

m�

◆2

. (5)

In the opposite limit, m
2

� ⌧ |q
2
|, then M / g

2

�/|q
2
|,

leading to a qualitatively di↵erent energy and tempera-
ture dependence of neutrino self-interactions; this regime
was investigated in Refs. [24, 25], which found no im-
provement in the H0 tension. Thus, for the remainder
of this work we focus on models in which m

2

� � |q
2
|

at energy scales relevant to the CMB. The intermediate
regime, where the mediator mass is negligible for some
CMB wave-numbers and not for others, is beyond the
scope of this work. We therefore require a new degree of
freedom with m

2

� � |q
2
|.

Throughout this cosmological epoch the neutrinos are
relativistic, so the typical momentum transfer is |q

2
| ⇠

T
2

⌫ . Therefore, the expansion indicated by the arrow in
Eq. (4) is valid (and we may neglect the momentum- and,
hence, temperature-dependence in Ge↵) only if m� � T⌫ .
Comparing the values in Eq. (2) to the expression for Ge↵

in Eq. (5), we see that

m� ' (4 � 200) ⇥ |g�|MeV , (6)

so a new sub-GeV state is generically required to realize
the self-interacting-neutrino solution to the H0 tension.
Since T⌫ < 100 eV at horizon entry of the highest mo-
mentum modes relevant for CMB anisotropies, the valid-
ity of the e↵ective interaction in Eq. (1) in the analyses of
Refs. [17–20, 22] requires m� & keV (as already pointed
out in Ref. [20]). From Eq. (6), this condition translates
to

m� & keV =) |g�| & 10�4
. (7)

Eqs. (6) and (7) bound the range of m�.
Finally, we note that the interaction in Eq. (3) is not

gauge-invariant at energies above the scale of electroweak

role of a light neutrinophilic scalar boson. Because a Majorana neutrino mass carries both SU(2)L and U(1)Y charges,
if the Majoron originates from a scalar multiplet charged under these symmetries, it su↵ers from strong constraints
from Z ! �J and Z ! Z

⇤
JJ ! ⌫⌫̄JJ decays that contribute to the Z-boson invisible width. In the first decay

channel, � stands for the “Higgs” boson for lepton-number violation,. Such a decay mode is kinematically allowed if
the lepton-number breaking scale occurs below the EW scale.∗ To avoid such limitations, the minimal setup is to have
the Majoron from a SM gauge singlet complex scalar � whose vacuum expectation value serves the sole purpose of
breaking lepton number [5]. A gauge-invariant neutrino mass operator is constructed using Higgs field insertions. The
corresponding e↵ective interacting Lagrangian takes the form

L =
1

⇤2
(LH)2� , (2.3)

where � carries �2 units of lepton number. For clarity, we suppress the lepton flavor indices in this subsection. Possible
UV completions for this operator will be addressed in Section 2.4.

Below the EW scale, the above Lagrangian contributes to a Yukawa-like interaction between � and neutrinos,

L =
v
2

2⇤2
⌫⌫� . (2.4)

Assuming � has a potential which makes it pick up a vacuum expectation value at scale f/
p

2, this term contributes
to Majorana neutrino mass

M⌫ = �
v
2
f

2
p

2⇤2
. (2.5)

Below the f scale, the � field decomposes into � = (f +�+ iJ)/
p

2. In this very simple model, the interactions between
�, J and, neutrino are proportional to the above neutrino mass

Lint =
M⌫

f
⌫⌫(� + iJ) . (2.6)

In perturbative theories, the mass of � is tied to the symmetry breaking scale f , whereas J is massless if the Lagrangian
we start with respects the lepton-number global symmetry. A nonzero mass of J can be generated in the presence of
explicit lepton-number violation.

Both � and J can mediate self-interaction among the active neutrinos. If the physical processes involving neutrino
self-interactions occur at an energy scale E below m� but above mJ , the Majoron plays the dominant role over �.
However, if E lies above the lepton number breaking scale f , both � and J contribute. For E � f , symmetry restoration
is expected if all mass scales are negligible at leading order. In this case, it is more e↵ective to perform calculations
using the whole complex field � [9].

2.2 Gauge Extensions of the Standard Model

While new gauge bosons are a key ingredient of high-scale theories like GUTs [10–14] and left-right symmetric mod-
els [11, 15, 16], an extended gauge sector with direct couplings to SM particles can also appear low energies. In this
context, there is a special class of minimal models, corresponding to gauging of anomaly-free global currents of the
SM. These scenarios are minimal because they do not require additional light matter to regulate pathological high-
energy behavior in amplitudes involving these bosons.† Examples of anomaly-free SM currents include B � L, Li � Lj ,
B � 3Li (B � L requires the presence of an additional right-handed neutrino), where B (L) stands for the baryon
(lepton) number current with possible flavor-dependence indicated by the subscript index [19–21] (see also Ref. [22]
for a comprehensive discussion of all anomaly-free U(1) currents in SM and simple extensions). The key observation
is that many of these currents involve couplings to the lepton doublets; the new gauge bosons therefore induce new
interactions between neutrinos of the form in Eq. (2.2).

In all of these gauge extensions, the beyond-SM interactions are not purely neutrinophilic, leading to interactions
among the charged SM fermions and between them and the neutrinos. More often than not, this feature leads to
the most powerful searches for these extensions emerging from experimental scenarios involving protons and electrons,
rather than neutrinos. We refer the reader to Ref. [23] for a thorough discussion on searches for these types of new
mediators.

∗
In the model where J and � belong to an SU(2)L triplet with hypercharge 2 whose vacuum expectation value, which breaks both lepton

number and SU(2)L, is constrained to be lower than a few GeV for the ⇢ parameter to pass the EW precision tests [8].
†
Equivalently, this behavior can be used to set very strong constraints on anomalous gauge symmetries [17, 18].
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Could be generated from a 
leptophilic scalar model:

See e.g. Berryman et al. (2022)
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] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in
detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.

NEUTRINO INTERACTIONS In addition to
their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g2⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X
we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.

The key quantity characterizing the interactions in
the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G2

e↵T
2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.

The opacity of the neutrino medium e↵ectively defines
a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.

EVOLUTION OF FLUCTUATIONS To deter-

FIG. 1: Visibility function for self-interacting neutrinos for

di↵erent values of the e↵ective coupling constant Ge↵ . Here,

we assume three neutrinos species. Note that that some of

the visibility functions have been rescale to fit in the frame.
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FIG. 2: Evolution of neutrino and photon fluctuations in

configuration space for both self-interacting neutrinos (blue

solid line) and standard free-streaming neutrinos (black dash-

dotted line). Here we have adopted a Planck cosmology [? ].

The phase shift and amplitude suppression of the photon fluc-

tuation associated with free-streaming neutrinos are readily

noticeable.

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density
and velocity fluctuations of the neutrinos are una↵ected
by the self-interaction, the moments with l � 2 are cor-
rected by a damping term proportional to ⌧̇⌫ which ef-

Neutrino Opacity:
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eter of the neutrino fluid respectively. These analysis
found consistency with the free-streaming limit. How-
ever, by modeling these parameters as constant through-
out the history of the Universe they could not capture the
realistic physics of neutrino decoupling. We incorporate
here the physics necessary to follow in detail the dynam-
ics of the transition of neutrinos from a tightly-coupled
fluid to particles free-streaming across the Universe.
NEUTRINO INTERACTIONS In addition to their
regular SM interactions, we assume that all of the neu-
trinos have non-negligible self-interactions due to their
interaction with a new heavy mediator X. We take X
to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can in-
tegrate out the heavy mediator to compute low energy
interactions and model the interaction as a four-fermion
vertex controlled by a dimensionfull coupling constant
G⌫ ⌘ g2X/M2

X . In this scenario, the possible emission of
a (light relative to the decaying species) X particle by
neutrinos in the final state of Kaon and W decay leads
to upper bounds on the value of gX . For a vector bo-
son, we must have gX < 8 ⇥ 10�5(MX/MeV) [21], while
for a scalar X we have gX < 0.014 [22]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [23].

In the early Universe, self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = �aG2

e↵T
5
⌫ ,

where all order unity numerical factors have been ab-
sorbed in Ge↵ / G⌫ , T⌫ is the temperature of the neu-
trino bath, and a is the scale factor describing the expan-
sion of the Universe. In this work, we focus our atten-
tion on the case where G⌫ � GF, where GF is the Fermi
constant. Therefore, we justifiably neglect the contribu-
tions from electroweak processes to the neutrino opacity
in what follows. The opacity of the neutrino medium
implicitly defines a neutrino visibility function given by
g⌫(z) ⌘ �⌧̇⌫e�⌧⌫ . As in the photon case, the visibil-
ity function can be thought of as a probability density
function for the redshift at which a neutrino begins to
free-stream. Compared to the standard case, the intro-
duction of a new type of interaction in the neutrino sector
can push the peak of the neutrino visibility function to
considerably lower redshift.
EVOLUTION OF FLUCTUATIONS To determine
the impact of neutrino self-interaction on cosmological
observables, we evolve the neutrino fluctuation equations
from their early tightly-coupled stage to their late-time
free-streaming solution. By prohibiting free-streaming,
neutrino self-interactions severely damp the growth of
anisotropic stress associated with the quadrupole and
higher moments of the neutrino distribution function.
Indeed, while the equations for the density and veloc-
ity fluctuations of the neutrinos are una↵ected by the
self-interaction, the moments with l � 2 are corrected
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FIG. 1: Evolution of neutrino and photon fluctuations in
configuration space for both self-interacting neutrinos (blue
solid line) and standard free-streaming neutrinos (black dash-
dotted line). Here we have adopted a Planck cosmology [4].
The phase shift and amplitude suppression of the photon fluc-
tuation associated with free-streaming neutrinos are readily
noticeable.

by a damping term proportional to ⌧̇⌫ which e↵ectively
suppresses their growth,

Ḟ⌫2 =
8

15
✓⌫ +

8

15
k� � 3

5
kF⌫3 +

9

10
↵2⌧̇⌫F⌫2, (1)

Ḟ⌫l =
k

2l + 1

⇥
lF⌫(l�1) � (l + 1)F⌫(l+1)

⇤
+ ↵l⌧̇⌫F⌫l, (2)

where we follow closely the notation of [24] in syn-
chronous gauge. The ↵ls are order unity l-dependent
coe�cients that depends on the specific model used for
neutrino interactions. In our analysis, we set these co-
e�cients to unity; in practice, any change to ↵2 can be
reabsorbed into Ge↵ while changes to ↵l for l � 3 have
very little impact on the CMB. We solve these equa-
tions numerically together with the standard perturba-
tion equations for the photons, baryons and dark matter
using a modified version of the code CAMB [25]. At early
times, the tightly-coupled neutrino equations are very
sti↵ and we use a tight-coupling approximation which
sets F⌫2 = 16(✓⌫ + k�)/(27↵2⌧̇⌫) and F⌫l = 0 for l � 3
[26]. We note that the neutrino opacity is related to the
commonly used viscosity parameter c2vis though the re-
lation c2vis = (1/3)(1 � (27/16)⌧̇⌫↵2F⌫2/(✓⌫ + k�)). As
long as neutrinos form a tightly-coupled fluid, the sec-
ond term is very close to unity and c2vis approaches zero.
After, the onset of neutrino free-streaming, the second
term becomes vanishingly small and c2vis ! 1/3.
We compare in Fig. 1 the evolution in configuration

space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctu-
ations [12]. For each Fourier mode of the photon fluc-

2

✓̇DM +
ȧ

a
✓DM � c

2
DMk

2
�DM � k

2
 = �DM(✓REL � ✓DM)

H
2 =

8⇡G

3
⇢tot (16)

�MFP >> H
�1 (17)

G⌫ = g
2
⌫/M

2
� (18)

One assumption that is rarely challenged is the free-
streaming nature of cosmological neutrinos (for excep-
tions, see [? ? ? ? ? ? ? ]). Within the standard model
this assumption is justified since SM neutrinos are ex-
pected to have decoupled from the primeval plasma in the
very early Universe at a temperature T ' 1 MeV. Yet,
this assumption is not a priori driven by any cosmolog-
ical observations, but is the results of a particle-physics
prior on the choice of cosmological models that we choose
to compare with data. Abandoning this prior allows us
to answer the important question: How does cosmologi-

cal data inform us about possible interactions in the neu-

trino sector? Free-streaming neutrinos create anisotropic
stress which, through gravity, alters the evolution of the
other particle species in the Universe [? ? ]. As cosmo-
logical fluctuations in the photon and baryon fluids are
particularly sensitive to the presence of a free-streaming
component during the radiation-dominated era, we ex-
pect the recent measurements of the CMB to provide a
strong constraint on the onset of neutrino free-streaming.

In this Letter, we compute the first purely cosmological
constraints on the strength of neutrino self-interactions.
In the following, we model the interaction as a four-
fermion vertex whose strength is controlled by a dimen-
sional constant, analogous to the Fermi constant, G⌫ . In
this scenario, the onset of neutrino free-streaming is de-
layed until the rate of these interactions fall below the
expansion rate of the Universe, hence a↵ecting the evo-
lution of cosmological fluctuations that enters the causal
horizon before that epoch. As we discuss below, the cos-
mological observables are compatible with a neutrino vis-
ibility function peaking at a temperature orders of mag-
nitude below that of the standard picture.

In earlier investigations of neutrino properties [? ?

? ? ? ? ], neutrinos were modeled as a fluid-like [?
] and constraints were placed on the phenomenological
parameters ce↵ and cvis, the rest-frame sound speed and
the viscosity parameter of the neutrino fluid respectively.
These analysis found consistency with the free-streaming
limit. However, by modeling these parameters as con-
stant throughout the history of the Universe they could
not capture the realistic physics of neutrino decoupling.
We incorporate here the physics necessary to follow in

detail the dynamics of the transition of neutrinos from
a tightly-coupled fluid to particles free-streaming across
the Universe.
NEUTRINO INTERACTIONS In addition to

their regular SM interactions, we assume that all of
the neutrinos have non-negligible self-interactions due to
their interaction with a new heavy mediator X. We take
X to be a singlet under all SM interactions and assume
that it only interacts with neutrinos through a coupling
constant gX . When the temperature of the neutrinos
falls significantly below the mediator mass, one can inte-
grate out the heavy mediator and model the interaction
as a four-fermion vertex controlled by a dimensionfull
coupling constant G⌫ / g

2
⌫/M

2
X . In this scenario, the

possible emission of X particle by neutrinos in the fi-
nal state of kaon and W decay leads to upper bounds
on the value of g⌫ . For a vector boson, we must have
g⌫ < 8 ⇥ 10�5(MX/MeV) [? ], while for a scalar X

we have g⌫ < 0.014 (90%-C.L.) [? ]. In comparison,
SN1987A places a much weaker constraint on neutrino
self-interaction, leading to G⌫ . 144MeV�2 [? ]. In the
following, we focus on the case where X is a scalar.
The key quantity characterizing the interactions in

the neutrino sector is the thermally-averaged neutrino
self-interaction cross section h�⌫iT⌫ ⌘ G

2
e↵T

2
⌫ , where all

the order unity numerical factors have been absorbed in
Ge↵ / G⌫ , and T⌫ is the temperature of the neutrino
bath. The X-mediated self-interactions render the neu-
trino medium opaque with an opacity ⌧̇⌫ = an⌫h�⌫iT⌫ ,
where n⌫ is the number density of neutrinos and a is
the scale factor describing the expansion of the Universe.
In this work, we focus our attention on the case where
G⌫ > GF, where GF is the Fermi constant. Therefore, it
is justified to neglect the contributions from electroweak
processes to the neutrino opacity.
The opacity of the neutrino medium e↵ectively defines

a neutrino visibility function given by f⌫(z) ⌘ �⌧̇⌫e�⌧⌫ .
This visibility function can be thought of as a probabil-
ity density function for the redshift at which a neutrino
begins to free-stream. For neutrino self-interacting with
the cross section given above, the visibility function is
always sharply peaked with a nearly Gaussian shape ex-
cept for a long tail extending toward lower redshifts. We
plot the neutrino visibility function for di↵erent values of
Ge↵ in Fig. 1. We observe that the main e↵ect of neu-
trino self-interaction is to considerably delay the onset of
free-streaming.
EVOLUTION OF FLUCTUATIONS To deter-

mine the impact of neutrino self-interaction on cos-
mological observables, we evolve the neutrino fluctua-
tion equations from their early tightly-coupled stage to
their late-time free-streaming solution. By prohibiting
free-streaming, neutrino self-interaction severely damps
the growth of anisotropic stress associated with the
quadrupole and higher moments of the neutrino distribu-
tion function. Indeed, while the equations for the density

Cyr-Racine & Sigurdson (2014)
Oldengott, Rampf & Wong (2015)

Neutrino visibility function

⌧̇⌫ / �aG2
e↵T

5
⌫

which neutrinos begin free-streaming before the onset of Big Bang nucleosynthesis is not too
surprising. That this mode spans values of the e↵ective neutrino coupling constant that are
more than seven orders of magnitude above the standard Fermi constant is simply a reflection
that the scales probed by the current CMB data are insensitive to the onset of neutrino free-
streaming if it happens early enough. Indeed, for Ge↵ . 10�4.5MeV�2, neutrino decoupling
occurs before the Fourier modes probed by the Planck data enter the causal horizon, implying
that they are una↵ected by the new neutrino interactions and receive the standard phase and
amplitude shift associated with neutrino free-streaming. We illustrate this in figure 5 where
we show the neutrino visibility function g⌫(⌧) ⌘ �⌧̇⌫e

�⌧⌫ as a function of conformal time.7

The gray band shows the approximate time interval in which the multipoles 410 < l < 2500
enter the causal horizon. This multipole range corresponds to scales encompassing all well-
measured CMB temperature peaks except for the first one. We see that the visibility functions
of models with Ge↵ . 10�4.5MeV�2 have no overlap with the time interval at which the modes
probed by the current Planck data are entering the horizon. This explains why the posterior
shown in figure 1 flattens out for this range of neutrino self-interacting strength.

The sharp suppression of the ⇤CDM mode of the posterior distribution for Ge↵ >

10�4.5MeV�2 indicate that these values delay neutrino free-streaming long enough for the
length scales probed by the CMB damping tail to enter the horizon. This is supported by
figure 5 where the red dashed line shows the models corresponding to the 95% upper limit
of the ⇤CDM mode (Ge↵ ⇡ 10�3.5MeV�2), whose visibility function has significant overlap
with the modes probed by the CMB. This indicates that the allowed upper limit on Ge↵

within the ⇤CDM mode strongly depends on the highest multipole probed by the data since
higher lmax are capable of probing an earlier onset of neutrino free streaming and thus smaller
values of Ge↵ . It is thus not surprising that our constraint on the ⇤CDM mode is similar to
that from ref. [58] since the value of lmax between the Planck 2013 and 2015 data release did
not appreciably change.

The deep trough in the posterior distribution for �3.2 . log10

�
Ge↵MeV2

�
. �2.3

indicate that CMB data strongly disfavor neutrino decoupling occurring while the modes
corresponding to the Silk damping tail are entering the horizon. Indeed, models with Ge↵

in this range have a neutrino visibility function peaking within the gray band of figure 5.
The dot-dashed blue line shows the neutrino visibility function for the best fit model within
the interacting neutrino mode. We observe that this visibility function peaks right as the
multipoles corresponding to the first CMB temperature peak (green shaded region) begin to
enter the Hubble horizon. In this case, none of the CMB temperature peaks in the range
410 < l < 2500 receives the phase and amplitude shift usually associated with neutrino
free streaming, hence requiring the other cosmological parameters, notably H0, As, and ns,
to absorb the resulting di↵erence in the temperature spectrum (see figure 7). From the
perspective of CMB polarization, the visibility function of the best fit interacting neutrino
model has a maximum near the epoch when the second peak of the E-mode polarization
spectrum at l ⇡ 370 is entering the horizon.

To understand the impact of this late neutrino decoupling, it is instructive to look at
the CMB temperature and E-mode polarization spectra on the relevant scales (l . 410),
as shown in figure 6. There, we observe that the interacting neutrino mode predicts a
slightly lower amplitude for the first peak of the temperature spectrum compared to the
standard ⇤CDM cosmology, while displaying more power than the standard paradigm at low

7Much like the better-known CMB visibility function, the neutrino visibility function is a probability
density function for the time at which neutrinos last scatter.
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4

dependence of the right-hand side of Eq. (7) should be
vanishingly small at early times when neutrinos form a
highly-relativistic tightly-coupled fluid. This allows us
to neglect the momentum-dependence of ⌅⌫ in the com-
putation of the collision integrals, an approximation that
was found to be accurate in Ref. [65]. We do retain, how-
ever, the momentum dependence of ⌅⌫ in the left-hand
side of the Boltzmann equation.

In this work, we only consider scalar perturbations and
thus expand the angular dependence of the ⌅̃⌫ variable
(the Fourier transform on ⌅⌫) in Legendre polynomials
Pl(µ)

⌅̃⌫(k,p, ⌧) =
1X

l=0

(�i)l(2l + 1)⌫l(k, p, ⌧)Pl(µ), (8)

where µ is the cosine of the angle between k and p. Be-
fore presenting the equation of motion for the neutrino
multipole moments ⌫l, we discuss the structure of the
collision integrals.

B. Collision term

The details of the collision term calculation for the
⌫⌫ ! ⌫⌫ process is given in Appendix C. As explained
above, the main simplification entering this calculation
is the use of the thermal approximation in which we ne-
glect the momentum dependence of the ⌫l variables. Un-
der this assumption, the collision term at first order in

perturbation theory C
(1)

⌫ can be written as

C
(1)

⌫
[p] =

G
2

e↵
T

6
⌫

4

@ ln f
(0)

⌫

@ ln p1

(9)

⇥
1X

l=0

(�i)l(2l + 1)⌫lPl(µ)

 
A

✓
p

T⌫

◆

+ Bl
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◆
� 2Dl
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p

T⌫

◆!
,

where the functions A(x), Bl(x), and Dl(x) are given
in Eqs. (C52), (C53), and (C54), respectively. Here, we
have adopted the notation T⌫ ⌘ T̄⌫ to avoid clutter.

C. Boltzmann equation for self-interacting
neutrinos

Substituting the collision term from Eq. (9) into
Eq. (B10) and performing the µ integral yields the equa-
tion of motion for the di↵erent neutrino multipoles ⌫l.

They can be summarized in the following compact form

@⌫l

@⌧
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T⌫,0

◆!
,

where we have introduced the comoving momentum q ⌘
ap, q = |q|, ✏ =

p
q2 + a2m2

⌫
, a is the scale factor nor-

malized to a = 1 today, �mn is the Kronecker delta func-
tion, and T⌫,0 is the current (a = 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to ⌫l is a consequence of our use of the
thermal approximation. We note that energy and mo-
mentum conservation ensures that A+B0 �2D0 = 0 and
A + B1 � 2D1 = 0, respectively.

As is standard in analyses of massive neutrino cosmolo-
gies, we shall consider our neutrino sector to be composed
of a mix of massive and massless neutrinos. In the mass-
less case (q = ✏), one can integrate Eq. (10) over the
comoving momentum to yield a simpler neutrino multi-
pole hierarchy [54, 64]
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A (x) + Bl (x) � 2Dl (x)

#
, (12)

and where we denoted the massless perturbations as Fl

to distinguish them from the massive neutrino variables
⌫l.

We implement these modified Boltzmann equations in
the cosmological code CAMB [108]. For computational
speed, we precompute the functions A, Bl and Dl on a
grid of q/T⌫,0 values and use an interpolation routine to
access them when solving the cosmological perturbation
equations. As in standard CAMB, we use a sparse 3-point
grid of q/T⌫,0 values to evaluate the integrals required
to compute the energy density and momentum flux of
massive neutrinos. We have checked convergence of our
scheme against a 5-point momentum grid and found neg-
ligible di↵erence in the CMB and matter power spec-
trum in the parameter space of interest. We also precom-
pute the coe�cient ↵l and tabulate them. We emphasize
that energy and momentum conservation ensures that
↵0 = ↵1 = 0, which we have checked with high accuracy.

For simplicity, we assume throughout this paper that
the neutrino sector contains one massive neutrino, with

Massive Neutrino Boltzmann Hierarchy
Simplified Boltzmann Hierarchy (assume decoupling in relativistic regime):
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Relaxation-time approximation

4

dependence of the right-hand side of Eq. (7) should be
vanishingly small at early times when neutrinos form a
highly-relativistic tightly-coupled fluid. This allows us
to neglect the momentum-dependence of ⌅⌫ in the com-
putation of the collision integrals, an approximation that
was found to be accurate in Ref. [65]. We do retain, how-
ever, the momentum dependence of ⌅⌫ in the left-hand
side of the Boltzmann equation.

In this work, we only consider scalar perturbations and
thus expand the angular dependence of the ⌅̃⌫ variable
(the Fourier transform on ⌅⌫) in Legendre polynomials
Pl(µ)

⌅̃⌫(k,p, ⌧) =
1X

l=0

(�i)l(2l + 1)⌫l(k, p, ⌧)Pl(µ), (8)

where µ is the cosine of the angle between k and p. Be-
fore presenting the equation of motion for the neutrino
multipole moments ⌫l, we discuss the structure of the
collision integrals.

B. Collision term

The details of the collision term calculation for the
⌫⌫ ! ⌫⌫ process is given in Appendix C. As explained
above, the main simplification entering this calculation
is the use of the thermal approximation in which we ne-
glect the momentum dependence of the ⌫l variables. Un-
der this assumption, the collision term at first order in

perturbation theory C
(1)

⌫ can be written as
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G
2

e↵
T

6
⌫

4

@ ln f
(0)

⌫

@ ln p1

(9)
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1X

l=0
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◆
� 2Dl

✓
p

T⌫

◆!
,

where the functions A(x), Bl(x), and Dl(x) are given
in Eqs. (C52), (C53), and (C54), respectively. Here, we
have adopted the notation T⌫ ⌘ T̄⌫ to avoid clutter.

C. Boltzmann equation for self-interacting
neutrinos

Substituting the collision term from Eq. (9) into
Eq. (B10) and performing the µ integral yields the equa-
tion of motion for the di↵erent neutrino multipoles ⌫l.

They can be summarized in the following compact form

@⌫l

@⌧
+ k

q

✏

✓
l + 1

2l + 1
⌫l+1 � l

2l + 1
⌫l�1

◆
(10)
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✏

q
 �l1

�

= �a
G

2

e↵
T

5
⌫
⌫l

f
(0)

⌫ (q)

✓
T⌫,0

q

◆ 
A

✓
q

T⌫,0

◆

+ Bl

✓
q

T⌫,0

◆
� 2Dl

✓
q

T⌫,0

◆!
,

where we have introduced the comoving momentum q ⌘
ap, q = |q|, ✏ =

p
q2 + a2m2

⌫
, a is the scale factor nor-

malized to a = 1 today, �mn is the Kronecker delta func-
tion, and T⌫,0 is the current (a = 1) temperature of the
neutrinos. The fact that the collision term is directly
proportional to ⌫l is a consequence of our use of the
thermal approximation. We note that energy and mo-
mentum conservation ensures that A+B0 �2D0 = 0 and
A + B1 � 2D1 = 0, respectively.

As is standard in analyses of massive neutrino cosmolo-
gies, we shall consider our neutrino sector to be composed
of a mix of massive and massless neutrinos. In the mass-
less case (q = ✏), one can integrate Eq. (10) over the
comoving momentum to yield a simpler neutrino multi-
pole hierarchy [54, 64]

@Fl

@⌧
+ k

✓
l + 1

2l + 1
Fl+1 � l

2l + 1
Fl�1

◆
(11)
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 �l1

�
= �aG

2

e↵
T

5

⌫
↵lFl,

where

↵l =
120

7⇡4

Z 1

0

dx x
2

"
A (x) + Bl (x) � 2Dl (x)

#
, (12)

and where we denoted the massless perturbations as Fl

to distinguish them from the massive neutrino variables
⌫l.

We implement these modified Boltzmann equations in
the cosmological code CAMB [108]. For computational
speed, we precompute the functions A, Bl and Dl on a
grid of q/T⌫,0 values and use an interpolation routine to
access them when solving the cosmological perturbation
equations. As in standard CAMB, we use a sparse 3-point
grid of q/T⌫,0 values to evaluate the integrals required
to compute the energy density and momentum flux of
massive neutrinos. We have checked convergence of our
scheme against a 5-point momentum grid and found neg-
ligible di↵erence in the CMB and matter power spec-
trum in the parameter space of interest. We also precom-
pute the coe�cient ↵l and tabulate them. We emphasize
that energy and momentum conservation ensures that
↵0 = ↵1 = 0, which we have checked with high accuracy.

For simplicity, we assume throughout this paper that
the neutrino sector contains one massive neutrino, with
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FIG. 2. Snapshot of neutrino and photon density fluctuations in configuration space at a fixed redshift. The black dot-dashed
line shows the standard free-streaming neutrino fluctuation while the green dashed line displays the corresponding photon
density fluctuation. The solid blue and red dotted lines show the density fluctuation of self-interacting neutrinos and the
corresponding photon perturbation, respectively. These two lines lie on top of one another since both neutrinos and photons
behave as tightly-coupled fluids at the epoch shown here. The di↵erence between the green dashed and the red dotted lines
readily illustrates the phase shift and amplitude suppression of the photon fluctuation associated with free-streaming neutrinos.
Here we have adopted a Planck cosmology [3].

neutrinos solely couple to CMB photons via the gravita-
tional potentials, which themselves depend on integrals

of the neutrino distribution function. While it would be
interesting to study and quantify the impact of neutrino
spectral distortions on the CMB (see e.g. [57]), we leave
this possibility to future work and assume the form of
Eqs. (4) and (5) to be valid throughout neutrino decou-
pling.

We solve Eqs. 4 and 5 numerically together with the
standard perturbation equations for the photons, baryons
and dark matter using a modified version of the code
CAMB [58]. At early times, the tightly-coupled neutrino
equations are very sti↵ and we use a tight-coupling ap-
proximation which sets F⌫2 = 8(✓⌫ + k�)/(15↵2⌧̇⌫) and
F⌫l = 0 for l � 3 [59]. We note that the neutrino opacity
is related to the commonly used viscosity parameter c2vis
though the relation c2vis = (1/3)(1�(15/8)⌧̇⌫↵2F⌫2/(✓⌫+
k�)). As long as neutrinos form a tightly-coupled fluid,
the second term is very close to unity and c2vis approaches
zero. After, the onset of neutrino free-streaming, the sec-

ond term becomes vanishingly small and c2vis ! 1/3. This
illustrates that modeling nonstandard neutrino physics
with a constant c2vis 6= 1/3 has no intuitive meaning in
terms of simple particle scattering, hence shedding doubt
on the usefulness of this parametrization.

We compare in Fig. 2 the evolution in configuration
space of self-interacting and free-streaming neutrino fluc-
tuations. Since it can establish gravitational potential
perturbation beyond the sound horizon of the photon-
baryon plasma, free-streaming radiation suppresses the
amplitude and shift the phase of photon density fluctua-
tions [13, 19, 20]. For each Fourier mode of the photon
fluctuations, the magnitude of these two e↵ects is directly
proportional to the free-streaming fraction of the total
radiation energy density when the Fourier mode enters
the Hubble horizon. If neutrino free-streaming is delayed
due to their self-interaction until redshift z⌫⇤, Fourier
modes of photon fluctuations entering the horizon before
z⌫⇤ would not be a↵ected by the standard shift in am-
plitude and phase. On the other hand, the amplitude of
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FIG. 3: a) Adiabatic Green’s functions for neutrino (solid) and photon (dashed) number density perturbations in the radiation
era. The neutrino fraction, Rν , of the radiation density is assumed infinitesimal. b) Adiabatic Green’s functions for the
gravitational potentials Φ± ≡ (Ψ ± Φ)/2 in the radiation era. The solid and dashed curves are the sums of the O(R0

ν) and
O(Rν) terms for three neutrino species. The dotted line is Φ+ = Φ for Rν → 0.

appearing on its right hand side is the one provided
by the photon density perturbation (112). As for the
left hand side, where Ψ = Φ+ + Φ−, the only delta-
function comes from the double derivative of the term
(

χ2 − 1
3

)

pΦ θ
(

1√
3
− |χ|

)

in eq. (106). The equality of

these contributions requires

pΦ = −
√

3(1 − Rν)pγ . (114)

Substituting eq. (106) in (113) and eliminating pΦ with
the relation above, we obtain

pγ =
1

1 − 2Rν

[

3

2
ζin −

∫ 1

−1
dχF−(χ)

]

. (115)

Calculating pΦ from the last two equations is somewhat
easier than from eq. (107).

Now we have all the analytic tools to analyze how neu-
trinos affect CMB perturbations. The evolution of metric
perturbations without neutrinos is given by eqs. (108–
109). Then the photon density Green’s function follows
from eqs. (112, 115) as

d̄(Rν→0)
γ = −3ζin

[√
3 θ
(

1√
3
− |χ|

)

−

− 1
2 δD

(

|χ|− 1√
3

)]

.

(116)

Its Fourier transform (93) leads to the photon density
Fourier modes in the radiation era:

d(Rν→0)
γ (τ, k) = −3ζin

(

2 sinϕs

ϕs
− cosϕs

)

, (117)

with ϕs = kτ/
√

3. In particular, without neutrinos the
photon density modes oscillate under the acoustic hori-
zon (ϕs # 1) as a pure ϕs cosine.

The predictions for both the phase and the amplitude
of the photon mode oscillations differ when the gravity

of neutrino perturbations is taken into account. The os-
cillations of the Fourier modes on subhorizon scales are
described by the singular terms in the real space Green’s
functions. For the photon density (112) these are the
δ-function and (χ± 1√

3
)−1 singularities at χ = ± 1√

3
:

d̄γ(χ) = pγ δD

(

|χ|−
1√
3

)

+
2rγ

χ2 − 1
3

+ . . . , (118)

where

rγ = Φ̄+(1/
√

3) (119)

and the dots stand for more regular terms. The Fourier
transform of eq. (118) follows from the first and third
lines of Table II, where n is set to 0 and 1, as

dγ(τ, k) = 2
(

pγ cosϕs − rγπ
√

3 sinϕs

)

+ O(ϕ−1
s ) . (120)

A non-zero phase shift with respect to the cosϕs oscil-
lations is generated whenever rγ $= 0. By eq. (119) this
can happen for adiabatic perturbations if only some per-
turbations propagate faster than the sound speed in the
photon fluid, and thus are able to generate metric pertur-
bations beyond the acoustic horizon. This is the case for
the neutrino perturbations, propagating with the speed
of light, Fig. 3 a).

The values of pγ and rγ in eq. (118) are calculated
in O(Rν ) order in Appendix C. With its results (C6)
and (C7), the mode (120) can be presented as

dγ(τ, k) = 3ζin(1 + ∆γ) cos (ϕs + δϕ) + O(ϕ−1
s ) , (121)

where

∆γ % − 0.2683Rν + O(R2
ν) ,

δϕ % 0.1912 πRν + O(R2
ν) .

(122)

As demonstrated in Fig. 4 a), our theoretical predictions
are in excellent agreement with numerical calculations

With SI 
neutrinos, no 
supersonic 
radiation can 
provide a 
gravitational 
tug to photons
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Some outrageous CMB results…
• ACT data also displays significant preference for neutrino 

self-interactions. Planck does not like it so much.

Das & Ghosh (2023)
Kreisch et al. (2023)

�5 �4 �3 �2 �1

log10[Ge↵/MeV�2]
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Massless �

3c + 0f

2c + 1f

1c + 2f

�5 �4 �3 �2 �1

log10[Ge↵/MeV�2]

Planck + ACT

Massless �

3c + 0f

2c + 1f

1c + 2f

Figure 1. 1D posteriors of log10 Ge↵ in three coupling scenarios using the ACT (left) & ACT+Planck (right)

data. The ACT data shows a preference for the SI over MI mode irrespective of the number of coupled neutrino

species, which stands in stark contrast with our earlier analysis using Planck 2018 data in Ref. [22]. When

combined with Planck, the SI mode significance is reduced compared to the MI mode for the flavor-universal

case. For flavor-specific cases, SI mode yields a better fit to the data. Additionally, the SI mode in the

ACT-only analysis favors a slightly larger value of log10 Ge↵ .

observed in the flavor-universal case (similar to the 3c + 0f scenario) studied in Ref. [29]. This can
be attributed to the better fit to the ACT EE data by the SI mode in the 700 . ` . 1000 range of
multipoles [29].

In the flavor non-universal scenarios, namely the 2c + 1f and 1c + 2f cases, the relative sig-
nificance of the MI mode relative to the SI mode is higher. In the flavor non-universal cases, the
changes in the CMB spectrum corresponding to the MI and SI points are smaller compared to the
flavor-universal case because a significant portion of the total radiation is simply free-streaming in
non-universal case [22]. This results in a smaller di↵erence in �

2 between the best points of the two
modes and, thus, results in a smaller peak height di↵erence in the posterior plot corresponding to the
two modes.

Moreover, the SI mode peak is slightly shifted to higher log
10

Ge↵ compared to the Planck-only
result (see Fig. 1 in Ref. [22]). Thus ACT data prefer a delayed neutrino decoupling compared to the
Planck data. In the right panel of Fig. 1 we show the results of the combined analysis with the ACT
and Planck data. The addition of ACT data with Planck increases the significance of the SI mode
for all cases. Particularly for the flavor non-universal cases, the SI mode provides a better fit to the
combined data. Since Planck prefers a smaller value of log

10
Ge↵ for the SI mode, in the combined

analyses, the SI mode peak positions are stretched toward a slightly smaller value compared to the
ACT result.

In Fig. 2 and 3, we show the triangle plots for some relevant cosmological parameters using ACT
and ACT+Planck data, respectively. For both datasets, there is an expected shift of the parameters
Ase

�2⌧reio and ns toward larger values when the number of interacting neutrino species is increased. As
explained in Ref. [22], this is because the scale-dependent power enhancement from large Ge↵ depends
on the total number of interacting neutrinos.

To study the individual modes in detail, we performed a separate analysis where we fixed the
prior range on log

10
Ge↵ to separate out the MI and SI mode according to Table 2 [22]. The parameter

– 6 –
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The SI𝜈 and the CMB

• The SIν is possible because of a multi-parameter 
degeneracy between the impact of neutrinos and changes 
in the primordial spectrum of fluctuations (ns, As).

• Planck CMB temperature data, BAO, and ACT data show 
a marked preference for a delayed onset of neutrino free-
streaming.

• However, Planck CMB polarization data tend to dislike 
the presence of new neutrino self-interactions. 
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FIG. 5: 1D posteriors for the TT+lens+BAO+H0 data combination after separating the SI⌫ and MI⌫ modes and
plotting them independently. For this reason, the peak locations and posterior shapes are of physical interest rather

than the relative heights of the peaks.
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Need an independent 
observable that can help 

confirm or rule out this signal. 
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Full Shape to the rescue



• Dark matter perturbation equation can be written as:

• The general solution (in radiation domination):

• Without free-streaming neutrinos, we have:  
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
of Ge↵ can be partially canceled by increasing

P
m⌫ , in

a nearly additive fashion. For the EE polarization spec-
trum, suppressing neutrino free-streaming can somewhat
compensate the extra damping caused by a large Ne↵ (at
fixed ✓⇤, zeq, and ⌦bh

2; see lower right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neu-
trinos’ impact on the two gravitational potentials �

and  . Indeed, neutrino self-interactions suppress the
anisotropic stress of the universe, leading to � �  = 0
before the onset of neutrino free-streaming. This con-
trasts with the ⇤CDM case for which � = (1 + 2R⌫/5) 
on large scales at early times for the adiabatic mode [107],
where R⌫ is the radiation free-streaming fraction. This
di↵erence in the evolution of the potentials modifies the
gravitational source term driving the the growth of mat-
ter fluctuations. The equation describing the evolution of
dark matter fluctuations can be written in Fourier space
as [112]

d̈c +
ȧ

a
ḋc = �k

2
 , (14)

where

dc ⌘ �c � 3�, (15)

and where �c = �⇢c/⇢c is the standard dark matter en-
ergy density contrast in Newtonian gauge. Here, an over-
head dot denotes a derivative with respect to conformal
time ⌧ . The gauge-invariant variable dc represents the
fractional dark matter number density perturbation by
unit coordinate volume. At late times, dc is nearly equal
to �c and it is thus a useful quantity to understand the
structure of the matter power spectrum at z = 0. In the
radiation-dominated epoch where ȧ/a = ⌧

�1, the solu-
tion to Eq. (14) can be written [118]

dc(k, ⌧) = �9

2
�p + k

2

Z
⌧

0

d⌧
0
⌧

0
 (k, ⌧

0) ln (⌧ 0
/⌧), (16)

where �p is the primordial value of � on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the  potential at horizon entry.

We compare the evolution of  in the presence of self-
interacting neutrinos with Ge↵ = 10�2 MeV�2 to that of
standard ⇤CDM in the left panel of Fig. 2. There, we
track the evolution of three di↵erent Fourier modes: k =
10 h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3
h/Mpc which does not enter

the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3

h
�1Mpc mode in Fig. 2. Taking together the evolu-

tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
of Ge↵ can be partially canceled by increasing

P
m⌫ , in

a nearly additive fashion. For the EE polarization spec-
trum, suppressing neutrino free-streaming can somewhat
compensate the extra damping caused by a large Ne↵ (at
fixed ✓⇤, zeq, and ⌦bh

2; see lower right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neu-
trinos’ impact on the two gravitational potentials �

and  . Indeed, neutrino self-interactions suppress the
anisotropic stress of the universe, leading to � �  = 0
before the onset of neutrino free-streaming. This con-
trasts with the ⇤CDM case for which � = (1 + 2R⌫/5) 
on large scales at early times for the adiabatic mode [107],
where R⌫ is the radiation free-streaming fraction. This
di↵erence in the evolution of the potentials modifies the
gravitational source term driving the the growth of mat-
ter fluctuations. The equation describing the evolution of
dark matter fluctuations can be written in Fourier space
as [112]
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where
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and where �c = �⇢c/⇢c is the standard dark matter en-
ergy density contrast in Newtonian gauge. Here, an over-
head dot denotes a derivative with respect to conformal
time ⌧ . The gauge-invariant variable dc represents the
fractional dark matter number density perturbation by
unit coordinate volume. At late times, dc is nearly equal
to �c and it is thus a useful quantity to understand the
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where �p is the primordial value of � on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the  potential at horizon entry.

We compare the evolution of  in the presence of self-
interacting neutrinos with Ge↵ = 10�2 MeV�2 to that of
standard ⇤CDM in the left panel of Fig. 2. There, we
track the evolution of three di↵erent Fourier modes: k =
10 h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3
h/Mpc which does not enter

the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3

h
�1Mpc mode in Fig. 2. Taking together the evolu-

tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the  potential at horizon entry.

We compare the evolution of  in the presence of self-
interacting neutrinos with Ge↵ = 10�2 MeV�2 to that of
standard ⇤CDM in the left panel of Fig. 2. There, we
track the evolution of three di↵erent Fourier modes: k =
10 h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3
h/Mpc which does not enter

the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
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evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
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their ⇤CDM counterparts, as illustrated by the k =
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tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
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eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
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Our analysis could be improved in a few di↵erent ways.
Given the computational resources we had at our disposal
and the need to obtain accurate values of the Bayesian
evidence, we used the “lite” version of the Planck high-`
likelihoods in our analysis. Since some of the assump-
tions that went into generating these likelihoods [136]
might not apply to the interacting neutrino cosmologies,
it would be interesting, given su�cient computing power,
to reanalyze these models with the complete version of
the likelihoods that include all the nuisance parameters.
In particular, it is possible that some of the foreground
nuisance parameters might be degenerate with the e↵ect
of self-interacting neutrinos. For simplicity, we have also
assumed that the helium fraction is determined by the
standard big-bang nucleosynthesis calculation through-
out our analysis. Given the new physics and the result-
ing modified thermal history of the neutrino sector for
the type of models we explore here, it reasonable to as-
sume that the helium fraction would in general be di↵er-
ent than in ⇤CDM. While the details of the helium pro-
duction within any interacting neutrino model are likely
model-dependent, a sensible way to take these e↵ects into
account would be to let the helium fraction float freely
in the fit to CMB data. We leave such analysis to future
works.

Given the structure of the residuals between the
best-fit interacting neutrino cosmologies and the ⇤CDM
model presented in Sec. VIII, it is clear that future high-
` CMB polarization and matter clustering measurements
will play an important role in constraining or ruling out
these models [see e.g. 137]. In particular, the overall red
tilt of the matter power spectrum in the strongly inter-
acting neutrino cosmology could have important conse-
quences on both large and small scales. Since current
anomalies in terrestrial neutrino experiments [2, 3] may
indicate the presence of new physics in the neutrino sec-
tor, it is especially timely to use the complementary na-
ture of cosmological probes to look for possible clues

about physics beyond the Standard Model.
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Appendix A: Results for all data sets

We display in Table VI and Table VII the 68% confi-
dence limits for the strongly interacting and moderately
interacting neutrino modes, respectively. In Fig. 11, we
show the marginalized posteriors for key cosmological pa-
rameters for a choice of smoothing kernel that represents
more accurately the shape of the SI⌫ mode. In Fig. 12,
we compare the marginalized posterior distribution of the
SI⌫ mode for the four data set combinations considered
in this work.

Appendix B: Perturbation equations for interacting massive neutrinos

In this appendix, we derive the Boltzmann equation governing the evolution of the distribution function of massive
self-interacting neutrinos which we denote by f⌫(x,P, ⌧), where P is the canonical conjugate variable to the position
x, and ⌧ is the conformal time. In the scenario considered here, neutrinos can exchange energy and momentum via
2-to-2 scattering of the type ⌫i + ⌫j ! ⌫k + ⌫l. The Boltzmann equation of neutrino species i can be written as

df⌫i

d�
=

3X

j,k,l=1

C⌫i+⌫j!⌫k+⌫l [f⌫i , f⌫jf⌫k , f⌫l ] (B1)

where � is an a�ne parameter that described the trajectory of the observer (see below) and C⌫i+⌫j!⌫k+⌫l is the
collision term for the process ⌫i + ⌫j ! ⌫k + ⌫l. In the conformal Newtonian gauge, the space-time metric takes the
form

ds
2 = a

2(⌧)[�(1 + 2 )d⌧2 + (1 � 2�)d~x2], (B2)where
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that the spectrum is shifted. Once again, we clearly see
that the absence of phase shift caused by a large value
of Ge↵ can be partially canceled by increasing

P
m⌫ , in

a nearly additive fashion. For the EE polarization spec-
trum, suppressing neutrino free-streaming can somewhat
compensate the extra damping caused by a large Ne↵ (at
fixed ✓⇤, zeq, and ⌦bh

2; see lower right panel of Fig. 1).

B. Matter power spectrum

The growth of matter fluctuations is sensitive to the
presence of self-interacting neutrinos through the neu-
trinos’ impact on the two gravitational potentials �

and  . Indeed, neutrino self-interactions suppress the
anisotropic stress of the universe, leading to � �  = 0
before the onset of neutrino free-streaming. This con-
trasts with the ⇤CDM case for which � = (1 + 2R⌫/5) 
on large scales at early times for the adiabatic mode [107],
where R⌫ is the radiation free-streaming fraction. This
di↵erence in the evolution of the potentials modifies the
gravitational source term driving the the growth of mat-
ter fluctuations. The equation describing the evolution of
dark matter fluctuations can be written in Fourier space
as [112]

d̈c +
ȧ
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and where �c = �⇢c/⇢c is the standard dark matter en-
ergy density contrast in Newtonian gauge. Here, an over-
head dot denotes a derivative with respect to conformal
time ⌧ . The gauge-invariant variable dc represents the
fractional dark matter number density perturbation by
unit coordinate volume. At late times, dc is nearly equal
to �c and it is thus a useful quantity to understand the
structure of the matter power spectrum at z = 0. In the
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where �p is the primordial value of � on large scales. The
integral appearing in Eq. (16) obtains most of its contri-
bution when k⌧ ⇠ 1. The changes to the growth of dark
matter fluctuations can thus be understood by examining
the behavior of the  potential at horizon entry.

We compare the evolution of  in the presence of self-
interacting neutrinos with Ge↵ = 10�2 MeV�2 to that of
standard ⇤CDM in the left panel of Fig. 2. There, we
track the evolution of three di↵erent Fourier modes: k =
10 h/Mpc which enters the horizon during the radiation
dominated era while neutrinos are still tightly-coupled to
each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to

free-stream, and k = 10�3
h/Mpc which does not enter

the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
the dark matter perturbation amplitude. Another way to
think about this is that the slower decay of the potential
 in the presence of self-interacting neutrinos reduces the
horizon-entry boost that dark matter fluctuations expe-
rience as compared to ⇤CDM.

For modes entering the horizon at the time of neu-
trino decoupling, the potential  begins decaying from its
larger value with R⌫ = 0 but rapidly locks into its stan-
dard ⇤CDM evolution due to the onset of neutrino free-
streaming. This case thus displays the quickest damping
of the  potential after horizon entry, which leads to a
net boost of dark matter fluctuations as compared to
⇤CDM. Indeed, these modes receive a positive contribu-
tion near horizon entry from the integral in Eq. (16), but
without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
evolution of the k = 0.3 h/Mpc mode in Fig. 2 displays
this behavior.

Finally, modes entering the horizon well-after the
onset of neutrino free-streaming behave exactly like
their ⇤CDM counterparts, as illustrated by the k =
10�3

h
�1Mpc mode in Fig. 2. Taking together the evolu-

tion of the di↵erent Fourier modes entering before, dur-
ing, and after neutrino decoupling, we expect the matter
power spectrum to have the following properties (at fixed
neutrino mass). For large wavenumbers entering the hori-
zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
entering the horizon at the onset of free-streaming, we ex-
pect a “bump”-like feature displaying an excess of power
as compared to ⇤CDM. As we go to even larger scales,
the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with

P
m⌫ = 0.06

eV, we see that the matter power spectrum is damped at
large wavenumbers and then displays a broad peak-like
feature with an excess of power as compared to ⇤CDM.
The shape of this power excess is determined by the neu-
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standard ⇤CDM in the left panel of Fig. 2. There, we
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10 h/Mpc which enters the horizon during the radiation
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each other, k = 0.3 h/Mpc which roughly corresponds to
the scale entering the horizon when neutrinos begin to
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h/Mpc which does not enter

the horizon until far after neutrino decoupling. We use
here the same cosmological parameters as in Fig. 1. The
resulting evolution of dark matter fluctuations for these
three modes is shown in the right panel of Fig. 2.

When modes enter the horizon during the radiation-
dominated era, the gravitational potential  decays in
an oscillatory fashion [118]. The absence of anisotropic
stress implies that  starts its oscillatory decaying behav-
ior from a larger amplitude. This boosts the amplitude
of the envelope of the decaying oscillations as compared
to ⇤CDM, leading to an overall slower decay. While this
at first increases the amplitude of dark matter fluctua-
tions at horizon entry as compared to ⇤CDM (see bottom
right panel of Fig. 2), the subsequent oscillations of the
integrand appearing in Eq. (16) lead to a net damping of
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 in the presence of self-interacting neutrinos reduces the
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without the subsequent extra damping due to the  po-
tential quickly converging to its ⇤CDM behavior. The
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tion of the di↵erent Fourier modes entering before, dur-
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power spectrum to have the following properties (at fixed
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zon while neutrinos are tightly coupled, we expect the
matter power spectrum to be suppressed compared to
⇤CDM. As we go to larger scales and approach modes
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pect a “bump”-like feature displaying an excess of power
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the matter power spectrum is expected to asymptote to
its standard ⇤CDM value.

These expectations are indeed realized as shown in
Fig. 3. The middle panel shows the power spectrum ra-
tios between the interacting neutrino models and ⇤CDM.
Focusing for the moment on the cases with
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FIG. 3: E↵ects of Ge↵ ,
P

m⌫ , and Ne↵ on the matter
power spectrum. Colors denote di↵erent values of Ge↵ .
Solid spectra correspond to

P
m⌫ = 0.06 eV and dashed

spectra correspond to
P

m⌫ = 0.23 eV. Dotted lines in
the bottom panel have Ne↵ = 4.046. Note the localized
increase in amplitude at the scales entering the horizon

at the onset of neutrino free-streaming.

radiation density leads to a higher amplitude feature on
scales entering the horizon at that time.

We thus see that taken together, the joint e↵ect of
Ge↵ ,

P
m⌫ , and Ne↵ can lead to matter power spectra

having a significantly di↵erent structure and shape than
the standard ⇤CDM paradigm.

V. DATA & METHODOLOGY

We use our modified versions of CAMB [108] and
CosmoMC + Multinest [119, 120] to place constraints on
Ge↵ , Ne↵ , and

P
m⌫ , as well as the standard cosmolog-

ical parameters. We use nested sampling [121] to ensure
that we properly sample our posterior, which we expect
to be multi-modal as in previous cosmological studies of
self-interacting neutrinos [54, 64, 65].

We use a combination of CMB and low-redshift data
sets in our analysis:

• TT: low-` and high-` CMB temperature power
spectrum from the Planck 2015 release2 [109].

• EE, TE: low-` and high-` CMB E-mode polariza-
tion and their temperature cross-correlation from
the Planck 2015 data release3 [109]. The 2015 po-
larization data is known to have residual systemat-
ics and results drawn using this dataset should be
interpreted with caution. While our main conclu-
sions will not make use of this dataset, we nonethe-
less present results including this dataset for com-
pleteness.

• lens: CMB lensing data from the Planck 2015 data
release [122].

• BAO: Baryon Acoustic Oscillation (BAO) mea-
surements from the 6dF Galaxy Survey constrain-
ing DV at z = 0.106 [123], Sloan Digital Sky Survey
(SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) data release 11 low-z data measuring
DV at z = 0.32 and CMASS data measuring DV

at z = 0.57 [124], and data from the SDSS Main
Galaxy Sample measuring DV at z = 0.15 [125]

• H0: Local measurement4 of the Hubble parameter
H0 = 73.0 ± 1.75 km s�1Mpc�1 at z = 0.04 from
Ref. [71].

We use the lite high-` likelihood, which marginal-
izes over nuisance parameters, to reduce the number of
free parameters in our analysis. We use the following
data set combinations for our nested sampling analysis:
‘TT+lens+BAO’, ‘TT+lens+BAO+H0’, ‘TT,TE,EE’,
and ‘TT,TE,EE+lens+H0’.

In Table I we list our adopted prior ranges. We place
uniform priors on all these parameters, except for the

2 Explicitly, we use the likelihood plik lite v18 TT for high-` and
commander rc2 v1.1 l2 29 B at low-`.

3 Explicitly, we use the likelihood plik lite v18 TTTEEE for high-`
and lowl SMW 70 dx11d 2014 10 03 v5c Ap at low-`.

4 We note that the mean value of H0 used in our analysis is slightly
lower (⇠ 0.14�) than the value quoted in the published version
of Ref. [71] (ours corresponds to the value found in an earlier
version of their manuscript). We do not expect this very small
di↵erence to impact our results in any way.
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P

m⌫ , and Ne↵ on the matter
power spectrum. Colors denote di↵erent values of Ge↵ .
Solid spectra correspond to

P
m⌫ = 0.06 eV and dashed

spectra correspond to
P

m⌫ = 0.23 eV. Dotted lines in
the bottom panel have Ne↵ = 4.046. Note the localized
increase in amplitude at the scales entering the horizon

at the onset of neutrino free-streaming.

radiation density leads to a higher amplitude feature on
scales entering the horizon at that time.

We thus see that taken together, the joint e↵ect of
Ge↵ ,

P
m⌫ , and Ne↵ can lead to matter power spectra

having a significantly di↵erent structure and shape than
the standard ⇤CDM paradigm.

V. DATA & METHODOLOGY

We use our modified versions of CAMB [108] and
CosmoMC + Multinest [119, 120] to place constraints on
Ge↵ , Ne↵ , and

P
m⌫ , as well as the standard cosmolog-

ical parameters. We use nested sampling [121] to ensure
that we properly sample our posterior, which we expect
to be multi-modal as in previous cosmological studies of
self-interacting neutrinos [54, 64, 65].

We use a combination of CMB and low-redshift data
sets in our analysis:

• TT: low-` and high-` CMB temperature power
spectrum from the Planck 2015 release2 [109].

• EE, TE: low-` and high-` CMB E-mode polariza-
tion and their temperature cross-correlation from
the Planck 2015 data release3 [109]. The 2015 po-
larization data is known to have residual systemat-
ics and results drawn using this dataset should be
interpreted with caution. While our main conclu-
sions will not make use of this dataset, we nonethe-
less present results including this dataset for com-
pleteness.

• lens: CMB lensing data from the Planck 2015 data
release [122].

• BAO: Baryon Acoustic Oscillation (BAO) mea-
surements from the 6dF Galaxy Survey constrain-
ing DV at z = 0.106 [123], Sloan Digital Sky Survey
(SDSS-III) Baryon Oscillation Spectroscopic Sur-
vey (BOSS) data release 11 low-z data measuring
DV at z = 0.32 and CMASS data measuring DV

at z = 0.57 [124], and data from the SDSS Main
Galaxy Sample measuring DV at z = 0.15 [125]

• H0: Local measurement4 of the Hubble parameter
H0 = 73.0 ± 1.75 km s�1Mpc�1 at z = 0.04 from
Ref. [71].

We use the lite high-` likelihood, which marginal-
izes over nuisance parameters, to reduce the number of
free parameters in our analysis. We use the following
data set combinations for our nested sampling analysis:
‘TT+lens+BAO’, ‘TT+lens+BAO+H0’, ‘TT,TE,EE’,
and ‘TT,TE,EE+lens+H0’.

In Table I we list our adopted prior ranges. We place
uniform priors on all these parameters, except for the

2 Explicitly, we use the likelihood plik lite v18 TT for high-` and
commander rc2 v1.1 l2 29 B at low-`.

3 Explicitly, we use the likelihood plik lite v18 TTTEEE for high-`
and lowl SMW 70 dx11d 2014 10 03 v5c Ap at low-`.

4 We note that the mean value of H0 used in our analysis is slightly
lower (⇠ 0.14�) than the value quoted in the published version
of Ref. [71] (ours corresponds to the value found in an earlier
version of their manuscript). We do not expect this very small
di↵erence to impact our results in any way.

Scales entering the 
horizon at the onset 

of neutrino free-
streaming
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Galaxy power spectra and interacting neutrinos 

• Interacting 
neutrinos can 
in principle 
provide a 
good fit to the 
galaxy power 
spectra when 
the primordial 
spectrum of 
fluctuations is 
also modified.  

Camarena, Cyr-Racine, Houghteling (2023)
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Galaxy power spectra: Profile likelihood

• By minimizing  
the full-shape 
likelihood, we 
see that the 
galaxy power 
spectra also 
shows some 
preference for 
the SIν!

Camarena, Cyr-Racine, Houghteling (2023)
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Preferred shape for the matter power 
spectrum

• The preferred neutrino 
interaction model has a 
matter power spectrum that 
is significantly suppressed 
on small scales. 

• This is a key prediction of 
such models!

Camarena, Cyr-Racine, Houghteling (2023)
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Preferred shape for the matter power 
spectrum

• Interestingly, similar matter power spectrum shapes seen for 
models preferred by the CMB. 

Kreisch, Cyr-Racine, Doré (2020)
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(a) Linear matter power spectrum (b) CMB Lensing power spectrum

FIG. 10: Relative di↵erence between the SI⌫ mode (upper panels) or MI⌫ mode (lower panels) and ⇤CDM for the
linear matter power spectrum (left) and the CMB lensing power spectrum (right). The SI⌫ and MI⌫ spectra are

produced using the maximum likelihood parameter values for each respective mode. Measurements from the Planck
2015 data release [109] are included in the right panel.

datasets, it is important to entertain the possibility that
a radically di↵erent scenario (i.e. statistically disjoint
in cosmological parameter space) could provide a better
global fit to the data.

Despite the success of the strongly interacting neutrino
cosmology in addressing tensions between certain cosmo-
logical data sets, there are several important obstacles
that still tilt the balance towards the standard ⇤CDM
cosmology. First, the addition of polarization data seems
to degrade the quality of the fit for the strongly interact-
ing neutrino cosmology. We have traced this deterio-
ration of the fit to our use of a Gaussian prior on the
reionization optical depth from Ref. [126]. This prior
was utilized as a way to capture the constraint on the
optical depth from low-` HFI Planck polarization data
before the full likelihood is made available. It it likely
that the Gaussian form of the prior leads to constraints
that are too strong as compared to what the full like-
lihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to deter-
mine whether this is the case. An important fact to keep
in mind is that Ref. [64] found that the addition of CMB
polarization data (without an additional ⌧ prior) tends
to increase the statistical significance of the strongly in-
teracting neutrino cosmology.

Second, the low values of the Bayes factor (see Ta-

ble IV) consistently favor either very weakly interacting
neutrinos or no interaction at all. This reflects the fact
that strongly interacting neutrinos can only fit the data
better for a narrow window of interaction strengths, while
⇤CDM provides a decent (but overall less good) fit over
a broader part of the parameter space. This is a funda-
mental feature of Bayesian statistics and it is unlikely to
change in future analyses. This highlights the need to
consider a portfolio of statistical measures to assess the
quality of a given cosmological model.

Third, it might be di�cult from a particle model-
building perspective to generate neutrino self interactions
with the strength required by the strongly interacting
neutrino cosmology while not running afoul of other con-
straints on neutrino physics. A viable model might look
similar to that presented in Ref. [32], but it remains to
be seen whether the necessary large interaction strength
can be generated while evading current constraints [87]
on new scalar particles coupling to Standard Model neu-
trinos. It is also possible that a successful self-interacting
neutrino model could have a di↵erent temperature depen-
dence than that considered in this work (�⌫ / T

5
⌫
). This

would change the shape of the neutrino visibility function
(see Refs. [54, 64]) and potentially improve the global fit
to the data. We leave the study of di↵erent temperature
scalings of the neutrino interacting rate to future works.
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datasets, it is important to entertain the possibility that
a radically di↵erent scenario (i.e. statistically disjoint
in cosmological parameter space) could provide a better
global fit to the data.

Despite the success of the strongly interacting neutrino
cosmology in addressing tensions between certain cosmo-
logical data sets, there are several important obstacles
that still tilt the balance towards the standard ⇤CDM
cosmology. First, the addition of polarization data seems
to degrade the quality of the fit for the strongly interact-
ing neutrino cosmology. We have traced this deterio-
ration of the fit to our use of a Gaussian prior on the
reionization optical depth from Ref. [126]. This prior
was utilized as a way to capture the constraint on the
optical depth from low-` HFI Planck polarization data
before the full likelihood is made available. It it likely
that the Gaussian form of the prior leads to constraints
that are too strong as compared to what the full like-
lihood will provide. Only a complete analysis with the
legacy Planck data, once available, will allow us to deter-
mine whether this is the case. An important fact to keep
in mind is that Ref. [64] found that the addition of CMB
polarization data (without an additional ⌧ prior) tends
to increase the statistical significance of the strongly in-
teracting neutrino cosmology.

Second, the low values of the Bayes factor (see Ta-

ble IV) consistently favor either very weakly interacting
neutrinos or no interaction at all. This reflects the fact
that strongly interacting neutrinos can only fit the data
better for a narrow window of interaction strengths, while
⇤CDM provides a decent (but overall less good) fit over
a broader part of the parameter space. This is a funda-
mental feature of Bayesian statistics and it is unlikely to
change in future analyses. This highlights the need to
consider a portfolio of statistical measures to assess the
quality of a given cosmological model.

Third, it might be di�cult from a particle model-
building perspective to generate neutrino self interactions
with the strength required by the strongly interacting
neutrino cosmology while not running afoul of other con-
straints on neutrino physics. A viable model might look
similar to that presented in Ref. [32], but it remains to
be seen whether the necessary large interaction strength
can be generated while evading current constraints [87]
on new scalar particles coupling to Standard Model neu-
trinos. It is also possible that a successful self-interacting
neutrino model could have a di↵erent temperature depen-
dence than that considered in this work (�⌫ / T

5
⌫
). This

would change the shape of the neutrino visibility function
(see Refs. [54, 64]) and potentially improve the global fit
to the data. We leave the study of di↵erent temperature
scalings of the neutrino interacting rate to future works.

�8 = 0.786± 0.020
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Our results are consistent with other analysis

He, An, Ivanov & Gluscevic (2023)

�8 = 0.786± 0.020

4

self-interacting neutrino scenario without any ⇤CDM as-
sumptions; namely, we do not use the “compressed”
BOSS likelihood containing BAO and RSD parameters
that are derived with a fixed Planck -like ⇤CDM tem-
plate [98, 114]. Finally, as in [98], our EFT-based likeli-
hood includes galaxy power spectrum shape information
that the standard BOSS likelihood does not contain [97].

The choice we make to impose a DES prior on S8 is
equivalent to adding the complete DES-Y3 dataset to
our analysis, as DES measures S8 to be the same value
for ⇤CDM, WDM, and ⇤CDM extensions [112, 115–
117]. The value of S8 is therefore robust under di↵er-
ent cosmological models, as long as the late-time growth
of structure is not modified; this is indeed the case for
interacting-neutrino model. Moreover, S8 is the primary
directly observed principle component of the weak lens-
ing data; it is thus close to being a model-independent
quantity. Therefore, we safely leave details of the full cal-
culation of the DES-Y3 likelihood in context of neutrino
self-interactions for future work.

Finally, we note that the data we chose to analyze, in-
cluding BOSS, Lyman-↵, and DES, are good proxies for
the information gleaned from LSS, but they do not repre-
sent a complete set of data currently available. In partic-
ular, we did not consider weak lensing from KiDS-1000
and HSC-Y3 because they have non-negligable covariance
with the data sets we consider; this covariance is not yet
available and must be modeled to analyze all these data
in tandem [118]. This task is beyond the scope of our

FIG. 2. Galaxy power spectrum, measured by BOSS (with
68% confidence-level error bars). We display the galaxy power
spectrum monopole P0(k), quadrupole P2(k), hexadecapole
P4(k), and the real-space power spectrum proxy Q0(k) for the
NGC low-z sample. The lines represent best-fit cosmologies
for two models considered in our analysis: ⇤CDM (with Ne↵

and
P

m⌫ as free parameters; dashed) and a self-interacting
neutrino cosmology with strong interactions (also with Ne↵

and
P

m⌫ as free parameters; solid). Both sets of curves are
generated with best-fit parameter values from our Planck +
BOSS + Lyman-↵ + DES analyses.

work. Furthermore, we do not analyze supernovae data
from Pantheon+ [119], since this data would solely con-
strain ⌦m, a background quantity that does not change
from its ⇤CDM value under neutrino self-interactions. In
addition, we choose not to add CMB lensing data to our
analysis, in order to directly reproduce the base Planck
results from [48]; however, we note that Refs. [47, 48]
find a higher likelihood for the strongly interacting mode
when adding CMB lensing to their analysis. Finally, we
do not include eBOSS DR16 BAO data in our analy-
sis, but we expect this data to further prefer a delayed
onset of neutrino free-streaming, as was the case in pre-
vious analyses [47, 48]. Likewise, eBOSS DR16 has not
yet been fully converted into a full-shape likelihood, so
we do not include it here. A dedicated future study is
warranted to analyze together all these data sets under
cosmological models beyond ⇤CDM.

We use our modified CLASS code and MontePython +
MultiNest to perform likelihood analyses [120–122]. For
the case of interacting neutrinos, once we discern the lo-
cation of the posterior mode consistent with ⇤CDM us-
ing MultiNest, we additionally sample this mode with a
Metropolis-Hastings algorithm, to speed up convergence
and increase sample accuracy; we use sample chains from
both approaches to reconstruct the final posterior distri-
butions shown in Sec. IV. In MultiNest, we set the num-
ber of live points to 400, the target sampling e�ciency
to 0.8, and the accuracy threshold for the log Bayesian
evidence to 20%, ensuring that our analysis is optimized
for parameter estimation.

In each run, we vary all standard cosmological parame-
ters; we also treat the e↵ective number of neutrino species
Ne↵ and the sum of the neutrino masses

P
m⌫ as free

parameters in each analysis. We assume that the neu-
trino sector consists of one massive neutrino and that
the rest of the species are massless (see Sec. II). We use
the standard Big Bang nucleosynthesis (BBN) predic-
tions to calculate the primordial Helium abundance YHe

[47, 48]. We assume broad flat priors on {!b, !c, 100✓s,
ln(1010As), ns} + log

10
(Ge↵ MeV2) + Ne↵ +

P
m⌫ . Fol-

lowing previous literature, we use a Gaussian prior on
⌧reio = 0.065±0.015, as a stand-in for low-l EE data [47].

We limit the upper bound of our prior on
log

10
(Ge↵ MeV2) to �0.5, as the equations of motion be-

come too sti↵ for CLASS to evolve at log
10
(Ge↵ MeV2) >

�0.5 [52]. We do not expect this choice to impact our
results, as Refs. [47, 48] do not find preference for any
values of log

10
(Ge↵ MeV2) & �0.8 in Planck data. In

line with Ref. [48], we initially set the lower bound of our
prior on log

10
(Ge↵ MeV2) to �5.5 in MultiNest. Go-

ing beyond previous analyses, we then extend the lower
bound to �8 and use Metropolis-Hastings algorithm to
map the low–Ge↵ mode of the posterior in detail. As
discussed in Sec. IV, this is essential in order to capture
the preference of the LSS data towards lower best-fit Ge↵
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Galaxy power spectra: Bayesian analysis

• We see consistent 
results, in which 
the full-shape data 
show a preference 
for the SIν. This is 
the same model 
favored by some 
CMB analyses. 

Camarena, Cyr-Racine, Houghteling (2023)
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• We now have two independent types of datasets showing the 
existence of the SI𝜈 cosmology.

• This implies that this is a physical feature present in the data, 
and not the results of a spurious feature in the CMB sky. 

• The statistical significance is however not overwhelming, and I 
would say that, at best, there is a mild preference for a delayed 
onset of neutrino free-streaming. 

• Another possibility is that the SI𝜈 is picking a feature in the 
data that has nothing to do with neutrinos but is caused by other 
physics.

• Either way, this points to the existence of something we do not 
yet understand, which is exciting!   

SI𝜈 Cosmology: The current situation
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Self-interacting dark matter and halo structure

Vogelsberger, Zavala, Cyr-Racine +, arXiv:1512.05349

10 M. Vogelsberger et al.

Figure 6. DM density projections of the zoom MW-like halo simulations for four different DM models. The suppression of substructure, relative to the CDM
model, is evident for the ETHOS models ETHOS-1 to ETHOS-3, which have a primordial power spectrum suppressed at small scales. The projection has a
side length and depth of 500 kpc.

subdominant impact compared to the effect of DM collisions. This
was already seen, albeit not as clearly, in Fig. 5.

The apparent reduction of substructure is quantified in more
detail in Fig. 8, where we show the cumulative distribution of sub-
haloes within 300 kpc of the halo centre as a function of their
peak circular velocity Vmax. The left panel shows the cumulative
number on a linear scale, and includes observational data from
Polisensky & Ricotti (2011). The MS problem is apparent since
there are significantly more CDM subhaloes than visible satellites.
This discrepancy can be solved or alleviated through a combination
of photo-evaporation and photo-heating when the Universe was
reionised, and supernova feedback (e.g. Efstathiou 1992; Gnedin
2000; Benson et al. 2002; Koposov et al. 2008), although photo-

evaporation and photo-heating alone may not be enough to bring
the predicted number of massive, luminous satellites into agree-
ment with observations (e.g., Boylan-Kolchin et al. 2012; Brooks
et al. 2013). The plot also demonstrates that the reduction of sub-
structure in ETHOS-1 to ETHOS-3 alleviates the abundance prob-
lem significantly. The strong damping in the power spectrum of
model ETHOS-1 leads to a very significant reduction of satellites
which is quite close to the data, perhaps too close given the ex-
pected impact of reionisation and supernovae feedback. If these
processes were to be included in our simulations with a similar
strength as they are included in hydrodynamical simulations within
CDM, model ETHOS-1 would be ruled out. One must be cautious
however, since the strength of these processes is not known well

MNRAS 000, 1–17 (2015)
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Self-interacting dark matter halo: Diversity of 
density profiles

• SIDM predicts a broad diversity of halo density profiles, 
that is absent in standard cold dark matter. 

Yang et al. (2022)



Probing SIDM: Effective Multiplane 
Lensing
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• Since lensing is just a mapping between a source plane 
and an image plane, compress everything to a single 
function:
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• Divergence and curl of the effective deflection field: 
Anisotropies between the radial and angular direction

Effective deflection field

Dhanasingham, Cyr-Racine + (2023) Thank you, Daniel Gilman!
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• Galaxy peculiar velocities give rise to a quadrupole 
moment in the galaxy two-point correlation function. 

Inspiration from large-scale structure

He et al. (2018)

• In strong lensing, 
presence of main galaxy 
break translation 
symmetry, giving rise to 
anisotropies. 
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• Compute the two-point function of the effective deflection 
field. 

Capturing Anisotropies

Dhanasingham, Cyr-Racine + (2023)
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Correlation function: Nonzero 
quadrupole moments 

06/23/2023Birendra Dhanasingham (UNM) 6

(see also, Hezaveh et al. 2016b; Chatterjee & Koopmans 2018; Díaz Rivero et 
al. 2018a,b; Brennan et al. 2019; Cyr-Racine et al. 2019; Çagan Şengül
et al. 2020; Bayer et al. 2023a,b)
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The quadrupole is probing line-of-sight 
halos
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Self-interacting Dark Matter

Dhanasingham, Cyr-Racine + (2023)
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Self-interacting Dark Matter

Dhanasingham, Cyr-Racine + (2023)
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Assessing detectability in ideal case 

Dhanasingham, Cyr-Racine + (2022)
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Self-interacting Conclusions
• Neutrinos:

• Due to neutrinos’ importance in the early Universe, 
cosmological data offer great sensitivity to new physics 
affecting neutrino free-streaming. 

• Both CMB and the galaxy power spectrum show some 
preference for neutrino self-interactions. 

• Dark Matter:
• Anisotropies in the two-point correlation function of the 𝜅div 

and 𝜅curl fields allow us to separate line-of-sight halos from 
main-lens substructure.

• By measuring both the quadrupole and monopole of the ξdiv 
function, get sensitivity to the SIDM cross section.  


