# Extending the Reach of the Cosmological Collider

Soubhik Kumar



w/ Arushi Bodas, Xingang Chen, Nathaniel Craig, Reza Ebadi, Amara McCune, Raman Sundrum

New Physics with Galaxy Clustering II: Trieste Nov 10, 2023

# Particle Physics at High Energies

LHC and other experiments have provided powerful probes at multi-TeV scales

But...

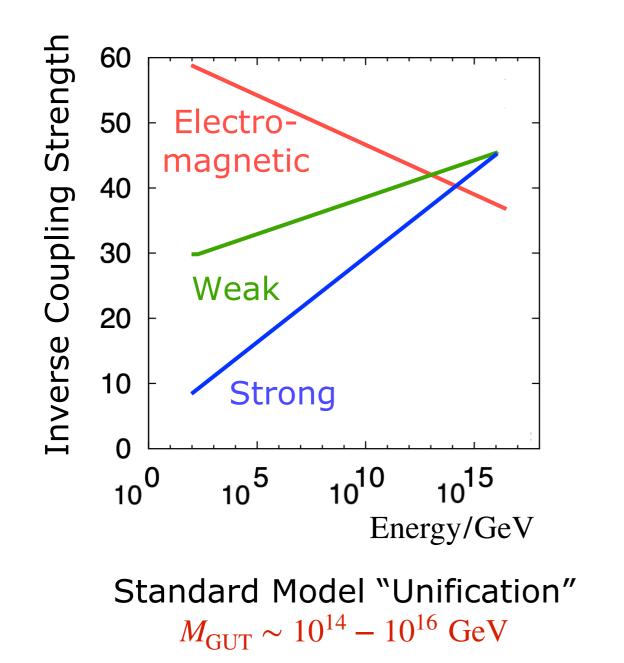
(I) What happens at higher energies? New particles? New symmetries?

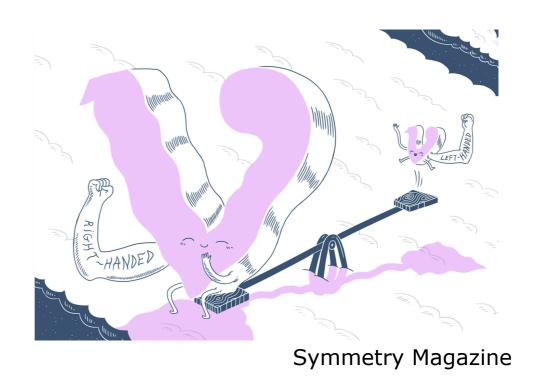
(II) Do forces unify?

(III) Connection with dark matter?

. . .

# **Classic Targets**





$$m_{\nu} \sim (yv_0)^2 / M_N$$

See-saw Mechanism  $M_N \sim 10^{14} - 10^{15} \text{ GeV}$ 

How to look for these? Especially, *on-shell* signatures?

#### **On-shell Probes**

Probes, e.g., proton decay, but otherwise too heavy to be on-shell *today*  Probes, e.g., proton decay, but otherwise too heavy to be on-shell *today* 

But the early Universe was energetic, in particular, inflationary Hubble  $H \leq 5 \times 10^{13}$  GeV! Planck 2018

GUT-scale states, right-handed neutrinos could have been produced on-shell

Need to understand their "fossil records" through cosmological observations!

Phenomenology varies significantly depending on the mass of the heavy particle

light-ish to heavy  $m \sim 0.1H - 10H$ 

- Ample production
- Isocurvature fluctuations
   [Fabian's, Marilena's talks]
- Features on the power spectrum [Ben's talk]
- Oscillatory non-Gaussianity (e.g., cosmological collider)
   [Oliver's talk]

Phenomenology varies significantly depending on the mass of the heavy particle

light-ish to heavy  $m \sim 0.1H - 10H$ 

- Ample production
- Isocurvature fluctuations
   [Fabian's, Marilena's talks]
- Features on the power spectrum [Ben's talk]
- Oscillatory non-Gaussianity (e.g., cosmological collider)
   [Oliver's talk]

superheavy  $m \gg 10H$ 

- Much rare production
- Larger energy reach!
- Localized signatures in position
   space
- CMB Hotspots
- Early Galaxies

Phenomenology varies significantly depending on the mass of the heavy particle

light-ish to heavy  $m \sim 0.1H - 10H$ 

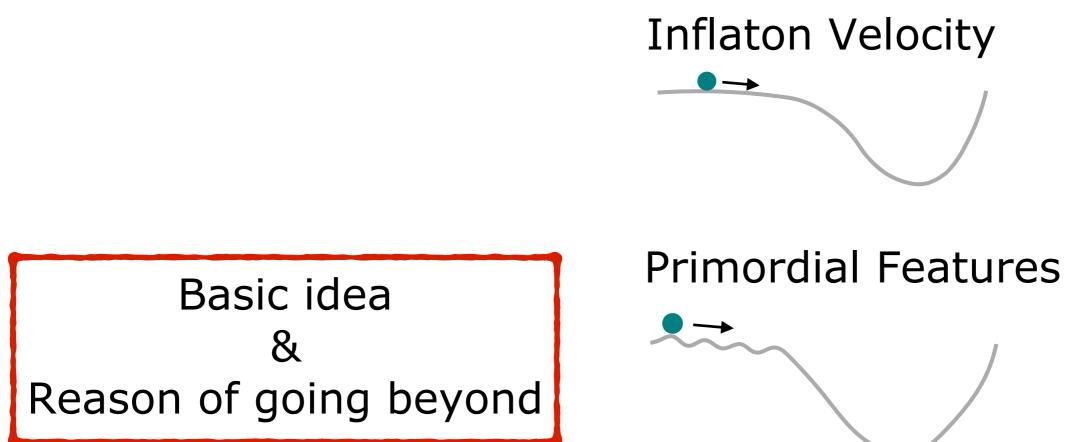
- Ample production
- Isocurvature fluctuations
   [Fabian's, Marilena's talks]
- Features on the power spectrum [Ben's talk]
- Oscillatory non-Gaussianity
   (e.g., cosmological collider)

[Oliver's talk]

superheavy  $m \gg 10H$ 

- Much rare production
- Larger energy reach!
- Localized signatures in position space
- CMB Hotspots
- Early Galaxies

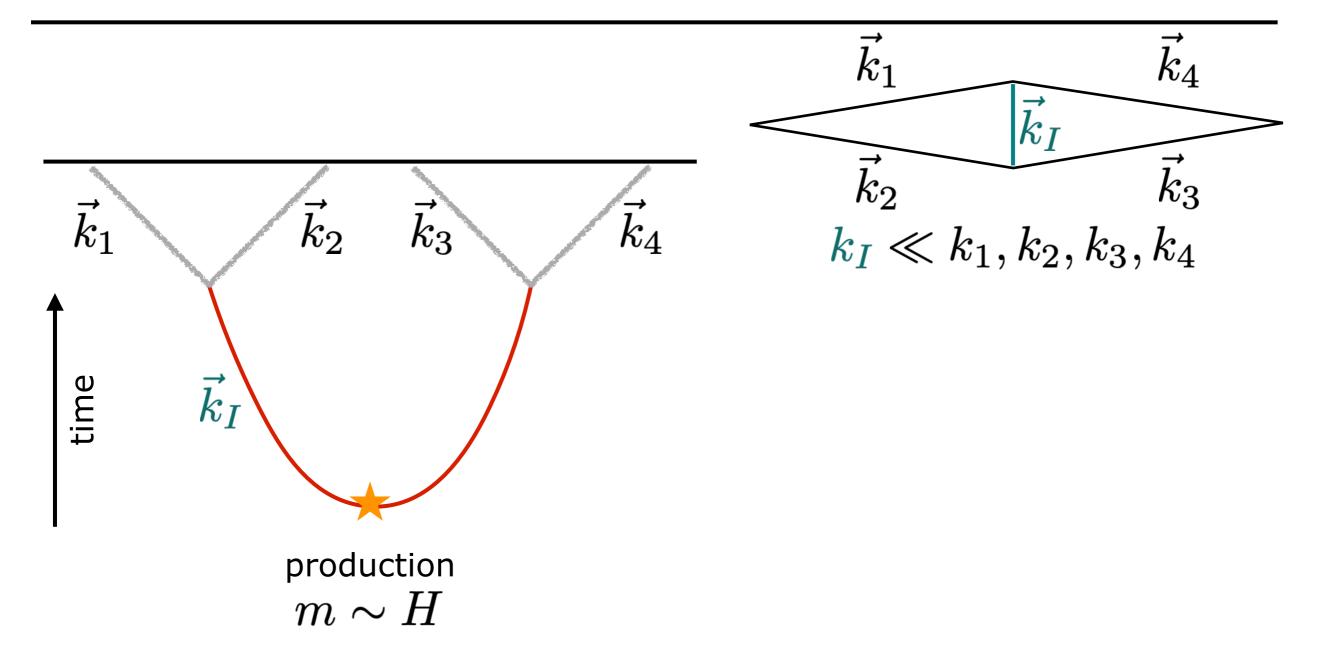
# Outline

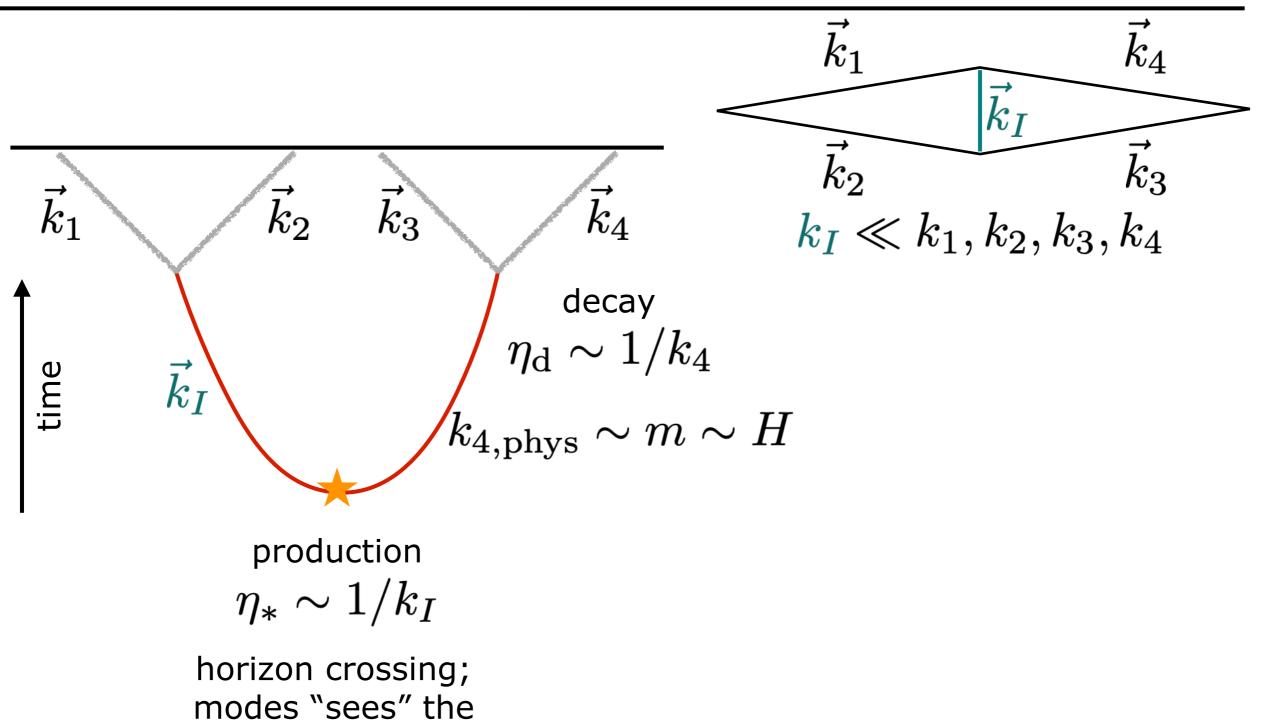


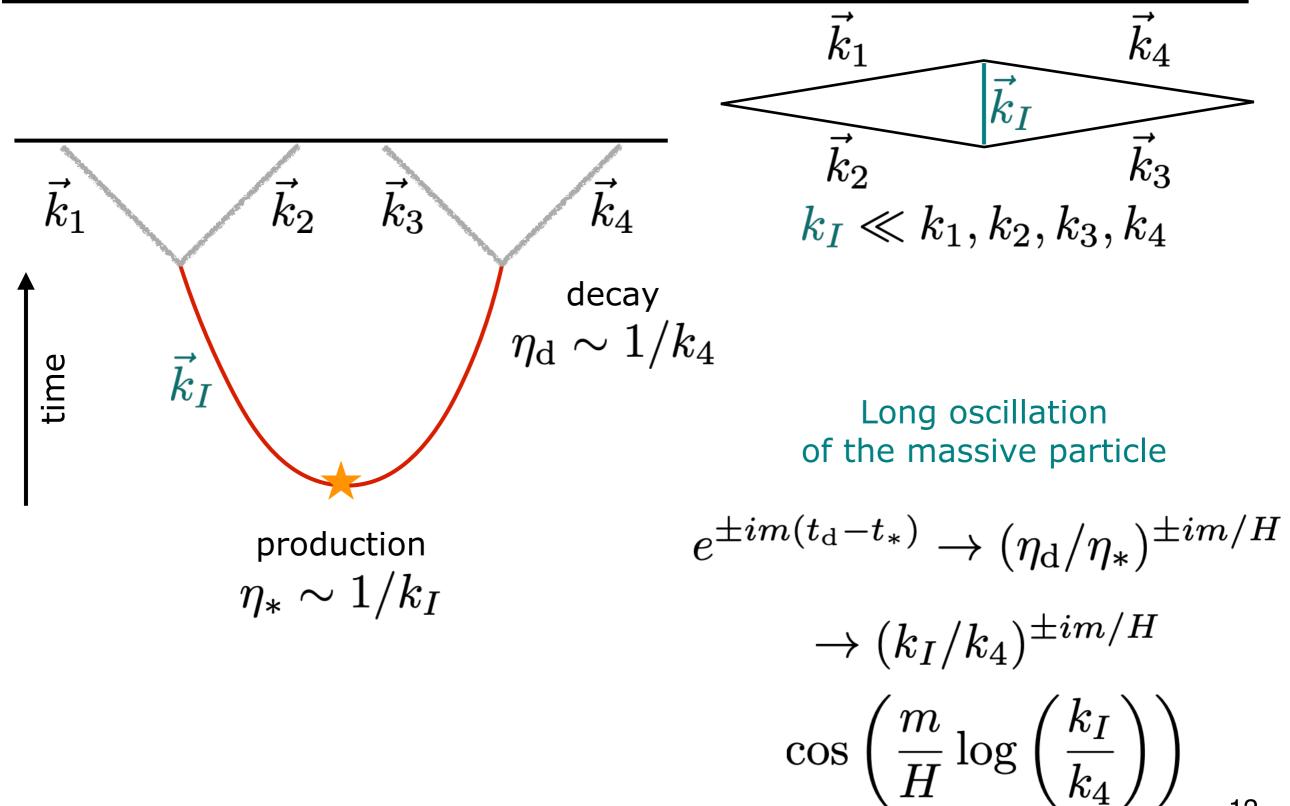
#### **Operator Basis**

| Dimension | Operator                                                                           | Dimension |
|-----------|------------------------------------------------------------------------------------|-----------|
| 5         | $\mathcal{O}_{5,4} = \phi F_{\mu u} \tilde{F}^{\mu u}$                             | 9         |
| 6         | $\mathcal{O}_{6,1} = ( abla_\mu \phi)^2 H^\dagger H$                               |           |
| 7         | $\mathcal{O}_{7,2} =  H ^2  abla_\mu \phi  abla_ u F^{ u \mu}$                     |           |
|           | $\mathcal{O}_{7,4} = F_{\mu\nu} \nabla^{\mu} \phi \nabla_{\rho} F^{\rho\nu}$       |           |
| 8         | $\mathcal{O}_{8,1} = F_{\mu u}F^{\mu u}( abla_ ho\phi)^2$                          |           |
|           | $\mathcal{O}_{8,2}=F_{\mu u}	ilde{F}^{\mu u}( abla_ ho\phi)^2$                     |           |
|           | $\mathcal{O}_{8,3}= H ^4( abla_\mu\phi)^2$                                         |           |
|           | $\mathcal{O}_{8,4} =  D_{\mu}H ^2 ( abla_{ u}\phi)^2$                              |           |
|           | $\mathcal{O}_{8,5} = (D^{\mu}H)^{\dagger}D^{\nu}H\nabla_{\mu}\phi\nabla_{\nu}\phi$ |           |
|           | $\mathcal{O}_{8,6} = F_{\mu ho}F^{ u ho} abla^{\mu}\phi abla_{ u}\phi$             |           |

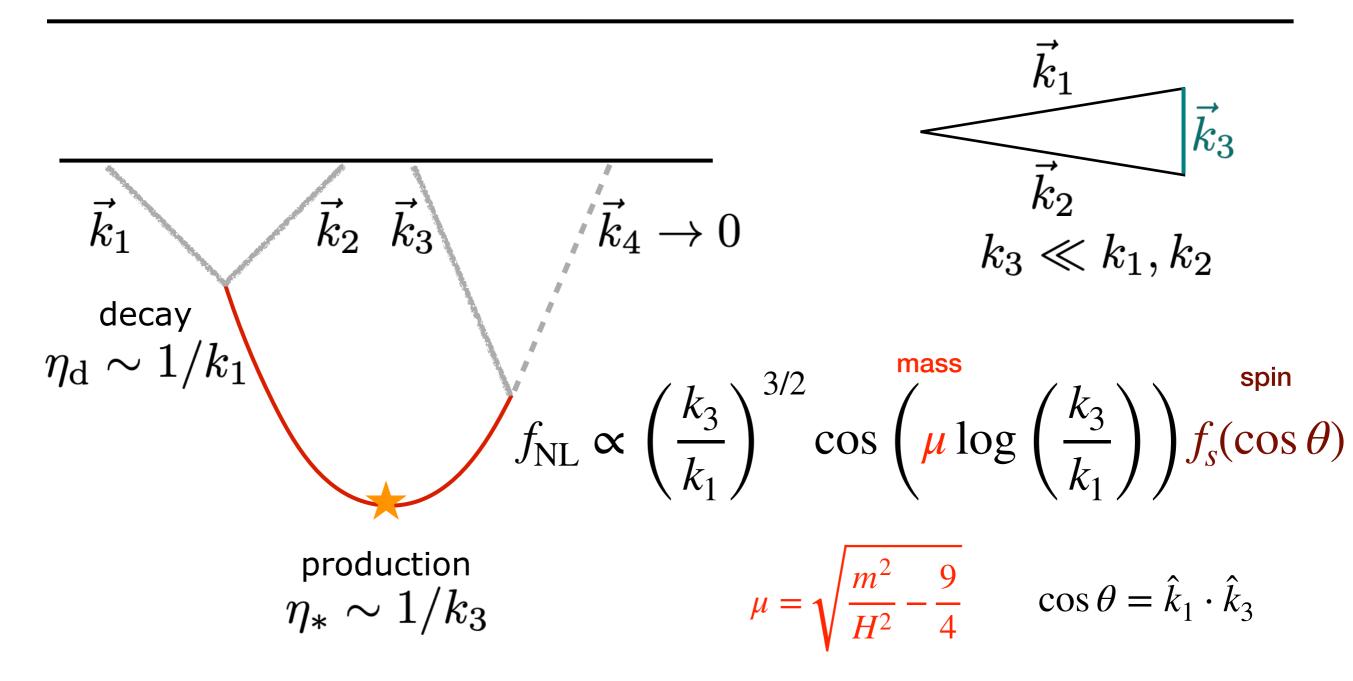
| ension | Operator                                                                                        |
|--------|-------------------------------------------------------------------------------------------------|
| 9      | $O_{9,2} =  H ^2 O_{7,2}$                                                                       |
|        | $O_{9,4} =  H ^2 O_{7,4}$                                                                       |
|        | $O_{9,5} = \nabla_{\nu}\phi\nabla^{\mu}(H^{\dagger}H)F_{\mu\alpha}F^{\nu\alpha}$                |
|        | $O_{9,6} = O_{5,1}F_{\alpha\nu}F^{\alpha\nu}$                                                   |
|        | $O_{9,7} = O_{5,1}F_{\alpha\nu}\tilde{F}^{\alpha\nu}$                                           |
|        | $O_{9,8} = \nabla_{\nu}\phi\nabla_{\beta}F^{\beta\mu}F_{\mu\alpha}F^{\nu\alpha}$                |
|        | $O_{9,9} = O_{5,3}F_{\alpha\nu}F^{\alpha\nu}$                                                   |
|        | $O_{9,10} = O_{5,3}F_{\alpha\nu}\tilde{F}^{\alpha\nu}$                                          |
|        | $O_{9,11} = O_{5,1} (\nabla_{\mu} \phi)^2$                                                      |
|        | $\mathcal{O}_{9,12}=\mathcal{O}_{5,3}( abla_\mu\phi)^2$                                         |
|        | $O_{9,13} = O_{5,1} D_{\mu}H ^2$                                                                |
|        | $O_{9,14} = \nabla_{\mu}\phi\nabla^{\nu}(H^{\dagger}H)(D^{\mu}H)^{\dagger}D_{\nu}H$             |
|        | $O_{9,15} = O_{5,3} D_{\mu}H ^2$                                                                |
|        | $O_{9,16} = \nabla_{\nu}\phi\nabla_{\alpha}F^{\alpha\mu}(D^{\nu}H)^{\dagger}D_{\mu}H$           |
|        | $O_{9,18} = \nabla_{\nu}\nabla_{\mu}\phi\nabla_{\alpha}F^{\alpha\mu}\nabla_{\beta}F^{\beta\nu}$ |
|        | $O_{9,19} = \nabla_{\nu}\nabla_{\mu}\phi\nabla_{\alpha}F^{\alpha\mu}\nabla^{\nu}(H^{\dagger}H)$ |







12



on-shell mass and spin information from bi/trispectrum!

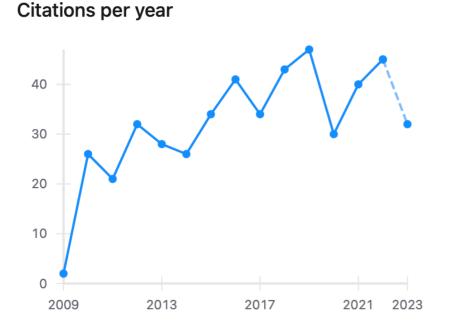
# Lots of Interesting Ideas

Azadeh, Ben, Fabian, Giovanni, Junwu, Marko, Misha, Oliver + many more

#### **Quasi-Single Field Inflation and Non-Gaussianities**

**Cosmological Collider Physics** 

Xingang Chen (Cambridge U., DAMTP and MIT), Yi Wang (McGill U. and Beijing, KITPC) Nima Arkani-Hamed (Princeton, Inst. Advanced Study), Juan Maldacena (Princeton, Inst. Advanced Study) Nov, 2009 Mar 27, 2015



#### Citations per year



Novel computational techniques, cosmological bootstrap Novel connections with particle physics Novel ways of probing using CMB and LSS

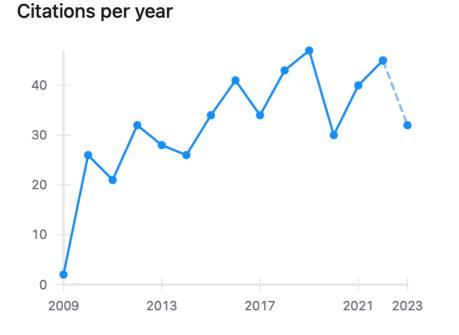
# Lots of Interesting Ideas

Azadeh, Ben, Fabian, Giovanni, Junwu, Marko, Misha, Oliver + many more

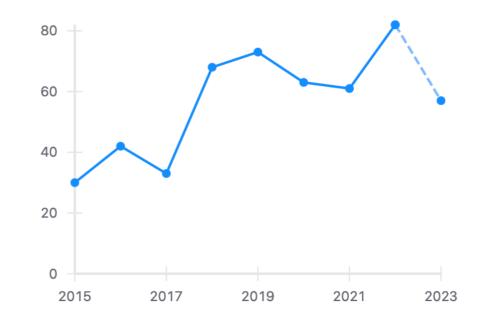
#### **Quasi-Single Field Inflation and Non-Gaussianities**

**Cosmological Collider Physics** 

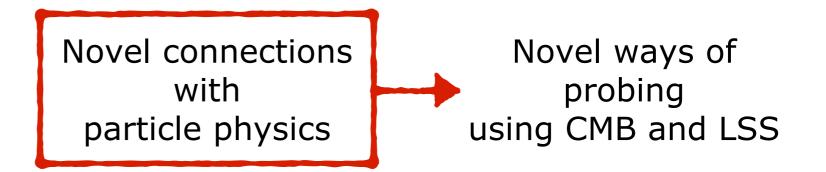
Xingang Chen (Cambridge U., DAMTP and MIT), Yi Wang (McGill U. and Beijing, KITPC) Nima Arkani-Hamed (Princeton, Inst. Advanced Study), Juan Maldacena (Princeton, Inst. Advanced Study) Nov, 2009 Mar 27, 2015



#### Citations per year



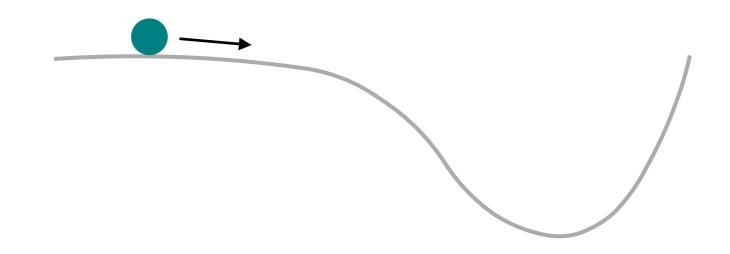
Novel computational techniques, cosmological bootstrap



#### Can We Observe This?

$$f_{\rm NL} \propto \frac{c}{2} \left(\frac{k_3}{k_1}\right)^{3/2} \cos\left(\mu \log\left(\frac{k_3}{k_1}\right)\right) f_s(\cos\theta)$$
  
Inflation gives *H*-scale energy:  $c \sim \exp\left(-\frac{\pi m}{H}\right)$   
Bad news!  
 $m \simeq 3H \rightarrow c \simeq 10^{-4}$   
only  
 $marrow$   
window?  
$$M_{\rm EW} \sim 100 \, {\rm GeV}$$

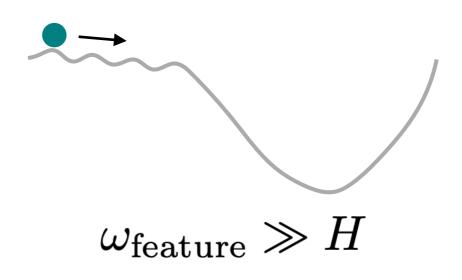




Slowly rolling inflaton has kinetic energy

$$\mathcal{P}_{\zeta} \sim \frac{H^4}{\dot{\phi}_0^2}$$
$$\dot{\phi}_0 \sim (60H)^2 \gg H^2$$

Inflaton potential can have "features"



Consider a complex scalar field, like a Higgs

$$\frac{1}{\Lambda}\partial_{\mu}\phi J^{\mu} \qquad \qquad J^{\mu} = \chi \partial^{\mu}\chi^{\dagger} - \chi^{\dagger}\partial^{\mu}\chi$$

If  $J^{\mu}$  is conserved then no effect

Consider a complex scalar field, like a Higgs

# **Energy Injection**

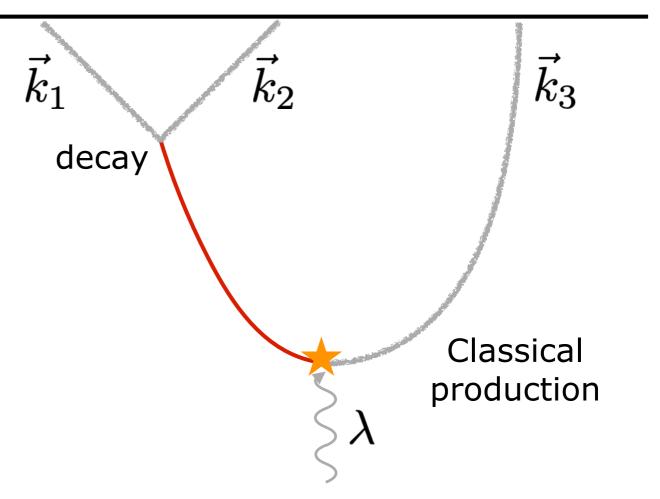
Bodas, **S.K.**, Sundrum 2010.04727

 $m^3(e^{-i\phi/\Lambda}\chi + e^{i\phi/\Lambda}\chi^{\dagger})$ 

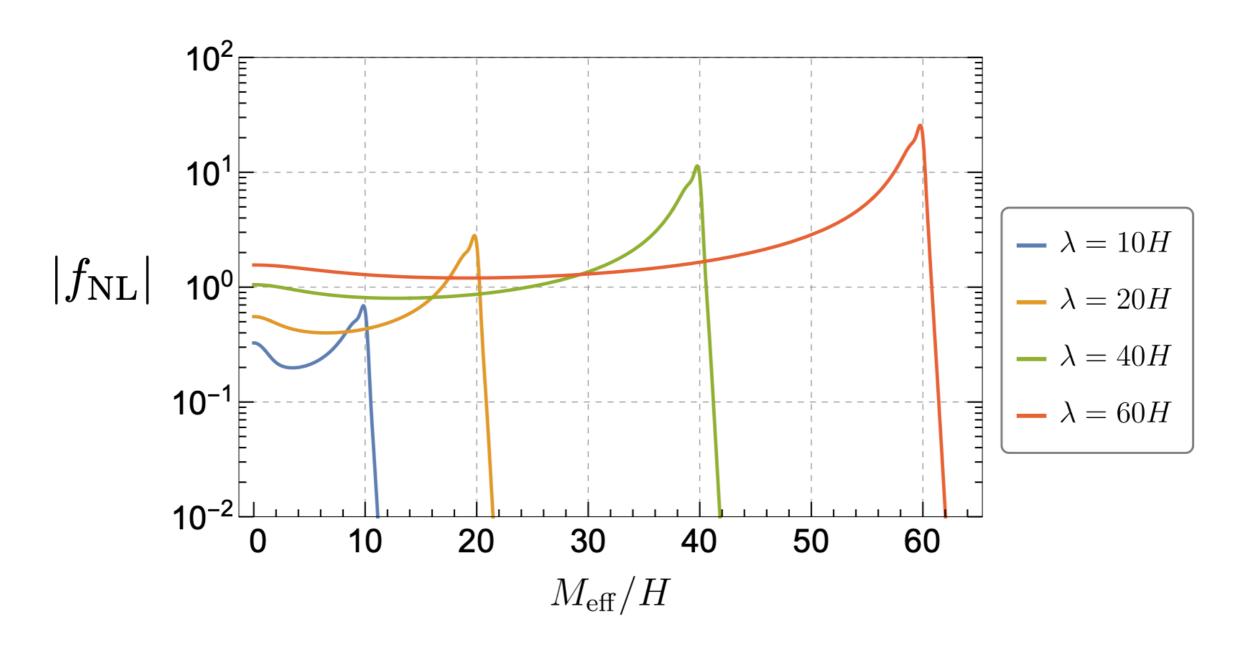
$$\frac{\phi}{\Lambda} = \frac{\dot{\phi}_0}{\Lambda}t + \frac{\delta\phi}{\Lambda}t$$
$$\equiv \lambda \gg H$$

 $\frac{m^3}{\Lambda}e^{-i\lambda t}\delta\phi\chi$ 

rapidly oscillating coupling

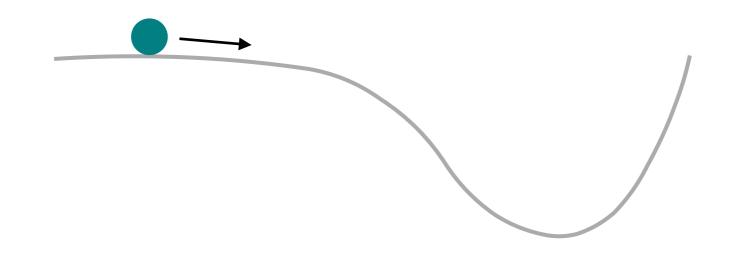


### The Reach

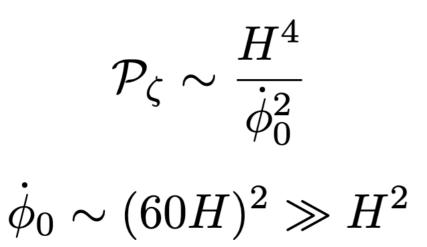


Strong backreaction regime: dissipative dynamics with  $f_{\rm NL}^{\rm eq} \simeq \mathcal{O}(10)$ Creminelli, S.K., Salehian, Santoni 2023

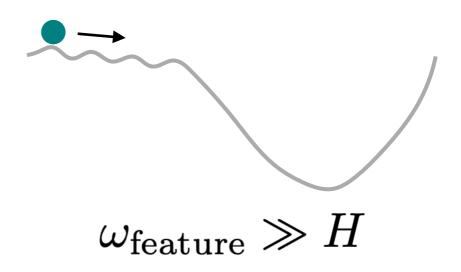




Slowly rolling inflaton has kinetic energy



Inflaton potential can have "features"



#### What happens with a real scalar field?

$$\frac{1}{\Lambda}\partial_{\mu}\phi J^{\mu} \qquad \qquad J^{\mu} = \chi \partial^{\mu}\chi^{\dagger} - \chi^{\dagger}\partial^{\mu}\chi \qquad \checkmark$$

usual slow-roll  $\phi_{
m background} = \phi_0(t) + \phi_1(t)$  oscillating, encodes

 $\omega_{\text{feature}}$ 

 $\omega_{\text{feature}} \gg H$ 

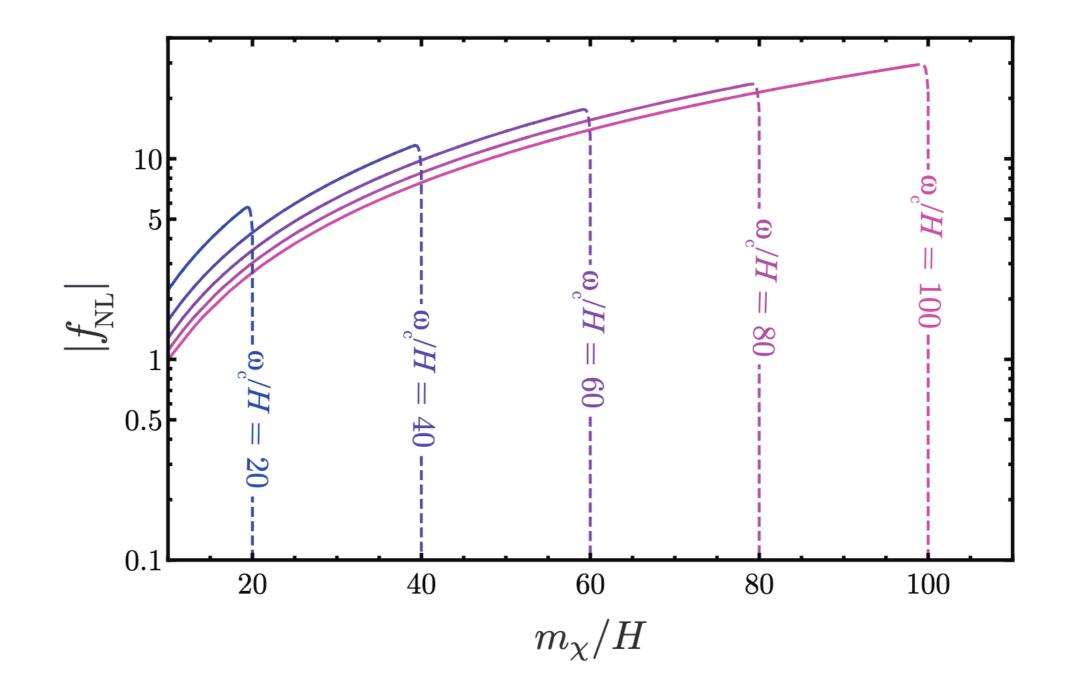
#### **Energy Injection** Chen, Ebadi, S.K. 2205.01107 $\vec{k}_3$ $\vec{k}_1$ $\omega_{\text{feature}} \gg H$ $ec{k_2}$ $\phi_{\text{background}} = \phi_0(t) + \phi_1(t)$ decay $\sim \cos(\omega_{\text{feature}}t)$ Classical $\frac{1}{\Lambda} (\partial \phi)^2 \chi \supset \frac{\phi_1}{\Lambda} \dot{\delta \phi} \chi$ production $\omega_{ ext{feature}}$ rapidly oscillating

coupling

24

#### The Reach

Chen, Ebadi, **S.K.** 2205.01107



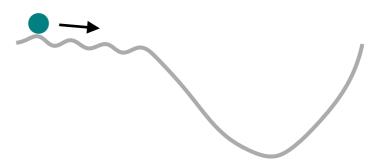
# Outline

#### Inflaton Velocity



#### Basic idea & Reason of going beyond

#### **Primordial Features**



#### **Operator Basis**

| Dimension | Operator                                                                           | Dimension | Operator                                                                                                                                         |
|-----------|------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| -         |                                                                                    | 9         | $O_{9,2} =  H ^2 O_{7,2}$                                                                                                                        |
| 5         | $\mathcal{O}_{5,4}=\phi F_{\mu u}	ilde{F}^{\mu u}$                                 |           | $\mathcal{O}_{9,4} =  H ^2 \mathcal{O}_{7,4}$                                                                                                    |
| 6         | ${\cal O}_{6,1}=( abla_{\mu}\phi)^2 H^{\dagger} H$                                 |           | $O_{9,5} = \nabla_{\nu}\phi\nabla^{\mu}(H^{\dagger}H)F_{\mu\alpha}F^{\nu\alpha}$                                                                 |
| -         |                                                                                    |           | $O_{9,6} = O_{5,1}F_{\alpha\nu}F^{\alpha\nu}$<br>$O_{9,7} = O_{5,1}F_{\alpha\nu}\tilde{F}^{\alpha\nu}$                                           |
| 7         | $\mathcal{O}_{7,2} =  H ^2  abla_\mu \phi  abla_ u F^{ u\mu}$                      |           | $O_{9,7} = O_{5,1}\Gamma_{\alpha\nu}\Gamma$<br>$O_{9,8} = \nabla_{\nu}\phi\nabla_{\beta}F^{\beta\mu}F_{\mu\alpha}F^{\nu\alpha}$                  |
|           | $\mathcal{O}_{7,4} = F_{\mu\nu} \nabla^{\mu} \phi \nabla_{\rho} F^{\rho\nu}$       |           | $O_{9,9} = O_{5,3}F_{\alpha\nu}F^{\alpha\nu}$                                                                                                    |
| 8         | $\mathcal{O}_{8,1} = F_{\mu\nu}F^{\mu\nu}(\nabla_{\rho}\phi)^2$                    |           | $\mathcal{O}_{9,10} = \mathcal{O}_{5,3} F_{\alpha\nu} \tilde{F}^{\alpha\nu}$                                                                     |
| - I       | $\mathcal{O}_{8,2} = F_{\mu\nu}\tilde{F}^{\mu\nu}(\nabla_{\rho}\phi)^2$            |           | $\mathcal{O}_{9,11} = \mathcal{O}_{5,1} (\nabla_{\mu} \phi)^2$                                                                                   |
|           |                                                                                    |           | $\mathcal{O}_{9,12} = \mathcal{O}_{5,3} ( abla_{\mu} \phi)^2$<br>$\mathcal{O}_{9,13} = \mathcal{O}_{5,1}  D_{\mu} H ^2$                          |
|           | $\mathcal{O}_{8,3}= H ^4( abla_\mu\phi)^2$                                         |           | $\mathcal{O}_{9,13} = \mathcal{O}_{5,1} D_{\mu}H $ $\mathcal{O}_{9,14} = \nabla_{\mu}\phi\nabla^{\nu}(H^{\dagger}H)(D^{\mu}H)^{\dagger}D_{\nu}H$ |
|           | $\mathcal{O}_{8,4} =  D_{\mu}H ^2 (\nabla_{\nu}\phi)^2$                            |           | $\mathcal{O}_{9,15} = \mathcal{O}_{5,3}  D_{\mu}H ^2$                                                                                            |
|           | $\mathcal{O}_{8,5} = (D^{\mu}H)^{\dagger}D^{\nu}H\nabla_{\mu}\phi\nabla_{\nu}\phi$ |           | $\mathcal{O}_{9,16} = \nabla_{\nu}\phi\nabla_{\alpha}F^{\alpha\mu}(D^{\nu}H)^{\dagger}D_{\mu}H$                                                  |
|           |                                                                                    |           | $\mathcal{O}_{9,18} = \nabla_{\nu} \nabla_{\mu} \phi \nabla_{\alpha} F^{\alpha \mu} \nabla_{\beta} F^{\beta \nu}$                                |
|           | $\mathcal{O}_{8,6} = F_{\mu\rho} F^{\nu\rho} \nabla^{\mu} \phi \nabla_{\nu} \phi$  |           | $O_{9,19} = \nabla_{\nu}\nabla_{\mu}\phi\nabla_{\alpha}F^{\alpha\mu}\nabla^{\nu}(H^{\dagger}H)$                                                  |

# **Counting Operators**

additional term

#### How to do these systematically?

Certain operators could be related to others via equations of motion / field redefinition etc.

Widely studied in the context of Standard Model EFT

# Currently developing the minimal basis up to dimension 9

| Dimension | Operator                                                                                                          |     | Dimension | Operator                                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                   | : [ | 9         | $\mathcal{O}_{9,2}= H ^2\mathcal{O}_{7,2}$                                                                        |
| 5         | $\mathcal{O}_{5,4}=\phi F_{\mu u}	ilde{F}^{\mu u}$                                                                |     |           | $\mathcal{O}_{9,4}= H ^2\mathcal{O}_{7,4}$                                                                        |
| 6         | $\mathcal{O}_{6,1} = ( abla_\mu \phi)^2 H^\dagger H$                                                              |     |           | $\mathcal{O}_{9,5} = \nabla_{\nu} \phi \nabla^{\mu} (H^{\dagger} H) F_{\mu \alpha} F^{\nu \alpha}$                |
|           |                                                                                                                   | :   |           | $\mathcal{O}_{9,6} = \mathcal{O}_{5,1} F_{\alpha\nu} F^{\alpha\nu}$                                               |
| 7         | $\mathcal{O}_{7,2} =  H ^2  abla_\mu \phi  abla_ u F^{ u \mu}$                                                    |     |           | $\mathcal{O}_{9,7} = \mathcal{O}_{5,1} F_{\alpha u} \tilde{F}^{\alpha u}$                                         |
|           |                                                                                                                   |     |           | $\mathcal{O}_{9,8} =  abla_ u \phi  abla_eta F^{eta \mu} F_{\mu lpha} F^{ u lpha}$                                |
|           | $\mathcal{O}_{7,4} = F_{\mu\nu} \nabla^{\mu} \phi \nabla_{\rho} F^{\rho\nu}$                                      | .   |           | $\mathcal{O}_{9,9} = \mathcal{O}_{5,3} F_{\alpha u} F^{lpha u}_{\check{a}}$                                       |
| 8         | $\mathcal{O}_{8,1} = F_{\mu u}F^{\mu u}( abla_ ho\phi)^2$                                                         |     |           | $\mathcal{O}_{9,10} = \mathcal{O}_{5,3} F_{\alpha u} 	ilde{F}^{lpha u}$                                           |
| Ŭ         | $\tilde{\boldsymbol{\varphi}}_{0,1} = \mu \nu^2  (\boldsymbol{\nabla} \boldsymbol{\varphi} \boldsymbol{\varphi})$ |     |           | $\mathcal{O}_{9,11}=\mathcal{O}_{5,1}( abla _{\mu }\phi )^{2}$                                                    |
|           | $\mathcal{O}_{8,2}=F_{\mu u}	ilde{F}^{\mu u}( abla_ ho\phi)^2$                                                    |     |           | $\mathcal{O}_{9,12}=\mathcal{O}_{5,3}( abla_\mu\phi)^2$                                                           |
|           | $\mathcal{O}_{8,3}= H ^4( abla_\mu\phi)^2$                                                                        |     |           | $\mathcal{O}_{9,13}=\mathcal{O}_{5,1} D_{\mu}H ^2$ .                                                              |
|           |                                                                                                                   |     |           | $\mathcal{O}_{9,14} =  abla_{\mu} \phi  abla^{ u} (H^{\dagger}H) (D^{\mu}H)^{\dagger} D_{ u} H$                   |
|           | $\mathcal{O}_{8,4} =  D_\mu H ^2 ( abla_ u \phi)^2$                                                               |     |           | $\mathcal{O}_{9,15}=\mathcal{O}_{5,3} D_{\mu}H ^2$                                                                |
|           | $\mathcal{O}_{8,5} = (D^{\mu}H)^{\dagger}D^{\nu}H\nabla_{\mu}\phi\nabla_{\nu}\phi$                                |     |           | $\mathcal{O}_{9,16} = \nabla_{\nu} \phi \nabla_{\alpha} F^{\alpha \mu} (D^{\nu} H)^{\dagger} D_{\mu} H$           |
|           |                                                                                                                   |     |           | $\mathcal{O}_{9,18} =  abla_{ u}  abla_{\mu} \phi  abla_{lpha} F^{lpha \mu}  abla_{eta} F^{eta  u}$               |
|           | $\mathcal{O}_{8,6}=F_{\mu ho}F^{ u ho} abla^{\mu}\phi abla_{ u}\phi$                                              |     |           | $\mathcal{O}_{9,19} = \nabla_{\nu} \nabla_{\mu} \phi \nabla_{\alpha} F^{\alpha \mu} \nabla^{\nu} (H^{\dagger} H)$ |

Certain operators at dimension 5 are redundant + new operators at dimension 8 (not considered before) 28

# Summary and Next Steps

- ► We have classic targets that predict new particles around  $10^{14} 10^{16}$  GeV
- These superheavy particles could lead to oscillatory bispectrum and/or trispectrum
- LSS would be powerful since we can probe 3D oscillations
- Search with CMB and LSS data? Especially for

 $m \sim (1 - 10)H$ ?

#### Thanks for your attention!