Hands-on session: Radioactivity Laboratory Spectrometry with Nal(Tl)

Prof. Giuseppe Iaselli Dott. Dayron Ramos Dott. Nicola Ferrara

Istituto Nazionale di Fisica Nucleare

Politecnico di Bari

Gamma Spectrometry

- Introduction to spectrometry
- Nal(Tl) photopeak detection
- Detection response
- Multi-Channel-Analysis
- Measurements

Basics of Pulse-Height Spectrometry

- Particles deposit energy into sensitive volume of detector
- Signal output proportional to particle energy
- Energy deposited outside the detector is not registered

- In inorganic scintillator there is an electron-hole creation and deexcitation on impurities intermediate states able to collect all the energy inside, because range in solid is very short.
- Very good performance-to-cost ratio
- Good coupling with PMT or APD

Energy bands in impurity activated crystal showing excitation, luminescence, quenching and trapping

Spectrometry with Nal(Tl)

- Inorganic scintillators are lab grown crystals.
- Pure crystals make bad scintillators:
 - the defined energy bands between valence band and excitation band means that energy emitted by the crystal get reabsorbed by the same lattice
 - There are only definite energy quanta allowing for the excitation of molecules
- Adding impurity improves the behavior
- There are more intermediate states between valence and excitation band that can be reached by the excited electron
- The emitted light is not completely reabsorbed by the crystal lattice

Light Output

Spectrometry with Nal(Tl)

Light output characterized by two time constants:

- 1. Fast (or prompt) component, due to activated centers
- 2. Slow (or non-prompt) component, mainly due to trapping

Usually the fast component dominates, but the ratio between A and B depends on the scintillating material

- Compton region
- Compton edge: $E_{re} = \frac{E_p^2}{E_p + 0.255}$
- Multiple Compton scattering
- Photopeak

- ¹³⁶Cs decay emitting 662 keV gamma rays
- Photopeak
- X-rays of Ba
- Backscattered peak

- Effect of detector size: more events in lower-energy spectra, and also in photopeak due to increase in detection efficiency
- Effect of scattering material around the source: more events in lower-energy spectra

- Gaussian shape peak, instead of narrowline.
- The width of the photopeak, ΔE, measured across its points of halfmaximum amplitude is the energy resolution. This is referred to as the full width at half maximum.

$$FWHM(\%) = \frac{\Delta E}{E_{\gamma}} * 100\%$$

- Energy linearity
- Proportionality between output pulse amplitude and energy absorbed in the detector
- Apparently non-linearities of 10-15 % for $E_{\gamma} < 0.2~MeV$
- Problems in calibrating with high energy sources and measuring lower-energy sources

• Theoretical dependence of energy resolution :

$$\frac{\Delta E}{E_{\gamma}} = \frac{1}{\sqrt{E}}$$

- Factors that raises energy resolution:
- 1. Integration time:

 $1 \ \mu sec$ for imaging SPECT

100 nsec for PET

2. Poor light coupling between scintillator and PMT

Energy resolution versus γ -ray energy for a 7.5-cm-diameter ~ 7.5-cm-thick NaI(TI) scintillation detector.

Solid line indicates theoretical $\frac{1}{\sqrt{E}}$ behaviour, fitted to low-energy data points.

Detector efficiency

Efficiency with which detectors converts emission of a source into signal

$$\xi\left(\frac{\gamma \, rays}{sec}\right) = A\left(\frac{dis}{sec}\right) * \, \eta\left(\frac{\gamma \, rays}{dis}\right)$$
$$R = D \, \xi$$

- Parameters
- ξ rate of emission
- A activity
- η gamma per disintegration
- *R* rate of counts
- D efficiency

Detector efficiency

- **Geometric (***g***)**: efficiency of geometric interception of radiation
- Intrinsic (ε): efficiency of absorption and conversion, depends on thickness, composition and type of particles
- **Energy selective (***f***)**: efficiency of selection of amplitude
- **Absorption and scattering (***F***)**: efficiency of materials between detectors and source

• $D = g * \varepsilon * f * F$

 $\varepsilon = 1 - e^{-\mu_l(E)x}$

 $\mu_l(E)$ is linear attenuation coefficient

Multi-channel analyzer

Energy selection is made by multichannel analyser, allowing the entire spectrum to be analysed

- Multi Channel Analyzer:
- 1. Receives in input PMT output signals
- 2. ADC digitizes the signals
- 3. Produces the pulse-height histogram = plot of number of events from the PMTs as function of output amplitude

Channel = specific energy range \rightarrow number of channels can be >1000 \rightarrow complete energy spectra produced

Gamma laboratory with MCA

CAEN mc ² Analyzer						- 0 ×
File Tools View Help						
🛯 🖉 📕 🚏 🔕 🕨 🟉 🔟 🕅 💆 🍳 🍳	\$ ↔ 🔾 🌍 🐗 🏦	0				
Histogram						• ×
f ' ' ' ' ' ' '					Church Read	
350					Channels Board	
				CAE	\$2580_26087	Import Export
300				OCAE	General Output	
				Tools for Disco	Very Run Settings	
					Name unname	
250					Cycle # 1	Duration (s) 600 🜩 Pause (s) 0 🜩
1200			·····;····		Clear Histogr	rams 🥑 Save Lists 🗌 GPS Enable
150						
E M						
100			••••••		·····	
50					·····	
	1.00				Auto Apply	Apply
	with the provide the second	2000	3000	······	4000	
		Channels				►
	Cursor Q X ROI Edit		-			A X Run Information A X
HV Channel Pol. PWR HV Range	F	lange: -		Done Cancel		Run Status: Start
\$2580_26087 HV0 POS ON O 1.6 kV - 500 uA ~	Channel 0 Begin		Centroid FWHM 590.85 53.48	Resolution Range 9.05 % 555-643	Gross Net 1832 567	Peak Run Loop: 1 36 Real Time (s): 191
	Count 0 555	643 9.56	590.85 53.48	9.05 % 555-643	1832 367	
						Pause (s): 0 Tot. Counts: 63462
						Dead Time (s): 1.083
						Gain Stabilizer: OFF
						Run ID: 132
					ReadOut Rate 0.02	MB/s Acquisition 💽 Connected 🥥

- 1. Calibrate MCA with sources
- 2. Measure ²⁴¹Am activity
- 3. Attenuation coefficient measure

Source

• ²⁴¹Am

• Americium-241 is the most important radioisotope of americium from the point of view of the occurrence in environment. The other long-lived isotope ²⁴³Am is produced in nuclear reactors in smaller activity compared to ²⁴¹Am. The activity of ^{242m}Am (half-life 160 years) that originated in nuclear weapons tests was nearly six orders of magnitude lower in comparison with ²⁴¹Pu activity from which ²⁴¹Am in-grows. Americium-241 is produced in nuclear power plants during activation of ²³⁹Pu and ²⁴⁰Pu by neutrons, which is followed by beta decay of ²⁴¹Pu (T_{1/2} = 14.35 years).

• Americium -241 is used in many smoke detectors for homes and business, for measure levels of toxic lead in dried paint samples, to ensure uniform thickness in rolling processes like steel and paper production, and to help determine where oil wells should be drilled.

CAEN mc ² Analyzer			- 0 ×
File Tools View Help			
🖬 🖉 🛃 🚏 🖾 🕨 🗰 🖬 🖌 💆 🔍 🌲	ee 🌊 🚯 🐗 🏦 🕕		
Histogram			
	Energy Calibration Channel Value Deviation 1354.9 1173.2 0 1536.33 1332.5 0	ADD Energy Units KeV Energy Calibration Linear y=A + B ⁺ x Remove All A-=16.435506807034 Cursor B=0.878024582483603 Certroid	Channels Board <controlled channel=""> Import Export iscovery DC Offset DC Offset DC Offset DC Offset Unput Range U</controlled>
	Import Export	OK Cencel	50.00 ♀ % Auto Apply 😭 Apply
hannels 🖡 🗙 Cu	rsor IX ROI Editor		₽
HV Channel Pol. PWR HV Range	Cui Range:	- Done S Cancel	Run Status: OFF
c	O Begin End Count 0 607 915 634 837	Unc. Certroid FWHM Resolution Rang 37.96 831.43 168.33 20.25 % 607-9 82.65 783.44 97.11 12.40 % 694-8	15 1050 121 10 Real Time (s): 0
			Gain Stabilizer: OFF Run ID: 0 ReadOut Rate 0.00 MB/s Acquisition Not Connected

Open calibration setup and set ⁶⁰Co peaks channels

R = D A $\mathbf{N} = D \mathbf{A} \Delta t$ $\frac{\mathrm{N}}{D\Delta t} = A$

If we assume D is equal to 50% because of geometry, obtain A

Energy	μ/ ho	$\mu_{\rm en}/ ho$			
(MeV)	(cm^2/g)	(cm^2/g)			
1.00000E-03	2.911E+03	2.905E+03			
1.50000E-03	9.536E+02	9.513E+02			
2.00000E-03	4.206E+02	4.192E+02			
3.00000E-03	1.288E+02	1.279E+02			
4.00000E-03	5.466E+01	5.398E+01			
5.00000E-03	2.792E+01	2.737E+01			
6.00000E-03	1.608E+01	1.561E+01			
8.00000E-03	6.750E+00	6.370E+00			
1.00000E-02	3.481E+00	3.153E+00			
1.50000E-02	1.132E+00	8.668E-01			
2.00000E-02	5.798E-01	3.462E-01			
3.00000E-02	3.009E-01	9.972E-02			
4.00000E-02	2.304E-01	4.695E-02			
5.00000E-02	2.020E-01	3.082E-02			
6.00000E-02	1.868E-01	2.508E-02			
8.00000E-02	1.695E-01	2.247E-02			
1.00000E-01	1.586E-01	2.297E-02			
1.50000E-01	1.406E-01	2.567E-02			
2.00000E-01	1.282E-01	2.772E-02			
3.00000E-01	1.111E-01	2.990E-02			
4.00000E-01	9.947E-02	3.073E-02			
5.00000E-01	9.079E-02	3.093E-02			
6.00000E-01	8.395E-02	3.079E-02			
8.00000E-01	7.372E-02	3.005E-02			
1.00000E+00	6.628E-02	2.909E-02			
1.25000E+00	5.927E-02	2.780E-02			
1.50000E+00	5.395E-02	2.657E-02			
2.00000E+00	4.630E-02	2.444E-02			
3.00000E+00	3.715E-02	2.135E-02			

The attenuation coefficient

 Table shows mass attenuation coefficient at different energy for the polyethylene terephthalate

POLYETHYLENE TEREPHTHALATE. "MYLAR"

MEASURE OF ATTENUAT										A	ttenuation	n		
Shield	1	x (cm)	x corrected (cm)	sigma I	sigma x (cm)	distance (cm)			160000				y = 135326e ^{-0,123}	
no shield	134978	0	0	367,3935	0,001	10			140000					
shield1	129355	0,387	0,402196473	359,6596	0,001				•			· · · · · · · · · · · · · · · · · · ·		
shield2	126537	0,539	0,560165113	355,7204	0,001	theta	22		120000	and the second second				
shield3	118536	0,931	0,967557923	344,2906	0,001	correction	1,039267					and a state of the		
shield1+shield3	115643	1,318	1,369754395	340,0632	0,001				100000				•	
shield2+shield3	113298	1,47	1,527723036	336,5977	0,001									
shield1+shield2+shield3	105802	1,857	1,929919509	325,2722	0,001				80000					
									60000					
oolyethylene therephtala	te (mylar)													
0,1158									40000					
olymethyl methacrylate									20000					
0,1035														
								0.5	0	0.5		1.5	2	
olyvynil chloride								-0,5	0	0,5	1	1,5	2	2,
0,1166														

Try with and without correction factor equal $\langle d \rangle = \frac{1}{2} \left(1 + \frac{1}{\cos \theta} \right)$

Hands-on

23