Hands-on session: Radioactivity Laboratory Spectrometry with NaI(TI)

Prof. Giuseppe Iaselli Dott. Dayron Ramos Dott. Nicola Ferrara

Istituto Nazionale di Fisica Nucleare

Politecnico di Bari

Gamma Spectrometry

- Introduction to spectrometry
- Nal(Tl) photopeak detection
- Detection response
- Multi-Channel-Analysis
- Measurements

- Particles deposit energy into sensitive volume of detector
- Signal output proportional to particle energy
- Energy deposited outside the detector is not registered

Photoelectric effect

- Energy of photon transferred to atom
- Atom ejects an electron
- Photon is absorbed
- $E_{pe} = h\nu K_B$

Photoelectron ejection creates a vacancy in an orbital electron shell, which is occupied by an electron of higher shell, which in turns lead to emission of a x-ray or an emission of an Auger electron

Compton effect:

- Energy of photon changes, because is transferred to electron
- Photon is not absorbed, but is deflected by $\boldsymbol{\theta}$ angle

•
$$E_{sf} = \frac{E_f}{(1 + \frac{E_f}{0.511}(1 - \cos\theta))}$$

- E_{sf} energy of scattered photon
- E_f energy of incident photon

Pair production:

Photon undergoes pair production if energy is more than 1022 keV

Positron undergoes annihilation with an electron, producing two photons back-to-back

Hands-on

Basics of Pulse-Height Spectrometry

Attenuation coefficient: $N = N_0 e^{-\mu(E)x}$ Mass attenuation coefficient: $\mu_m = \frac{\mu}{\rho}$

It depends on energy and on type of interaction

7

Energy	μ/ρ	$\mu_{\rm en}/\rho$					
(MeV)	(cm^2/g)	(cm^2/g)					
1.00000E-03	2.911E+03	2.905E+0					
1.50000E-03	9.536E+02	9.513E+02					
2.00000E-03	4.206E+02	4.192E+02					
3.00000E-03	1.288E+02	1.279E+02					
4.00000E-03	5.466E+01	5.398E+0					
5.00000E-03	2.792E+01	2.737E+0					
6.00000E-03	1.608E+01	1.561E+0					
8.00000E-03	6.750E+00	6.370E+0					
1.00000E-02	3.481E+00	3.153E+0					
1.50000E-02	1.132E+00	8.668E-0					
2.00000E-02	5.798E-01	3.462E-0					
3.00000E-02	3.009E-01	9.972E-02					
4.00000E-02	2.304E-01	4.695E-02					
5.00000E-02	2.020E-01	3.082E-02					
6.00000E-02	1.868E-01	2.508E-02					
8.00000E-02	1.695E-01	2.247E-0					
1.00000E-01	1.586E-01	2.297E-02					
1.50000E-01	1.406E-01	2.567E-02					
2.00000E-01	1.282E-01	2.772E-02					
3.00000E-01	1.111E-01	2.990E-02					
4.00000E-01	9.947E-02	3.073E-02					
5.00000E-01	9.079E-02	3.093E-02					
6.00000E-01	8.395E-02	3.079E-02					
8.00000E-01	7.372E-02	3.005E-02					
1.00000E+00	6.628E-02	2.909E-02					
1.25000E+00	5.927E-02	2.780E-02					
1.50000E+00	5.395E-02	2.657E-02					
2.00000E+00	4.630E-02	2.444E-02					
3.00000E+00	3.715E-02	2.135E-02					

NIST database

POLYETHYLENE TEREPHTHALATE. "MYLAR"

_____ μ/ρ ----- μ_{en}/ρ

 10^{2}

101

104

 10^{3}

10²

10¹

100

10

10⁻²

10-2

10-1

Photon Energy, MeV

100

cm²/g

 $\mu_{\rm en}/\rho$.

μ/ρ or

 Table shows mass attenuation coefficient at different energy for the polyethylene terephthalate

Energy bands in impurity activated crystal showing excitation, luminescence, quenching and trapping

Spectrometry with Nal(Tl)

- Inorganic scintillators are lab grown crystals.
- Pure crystals make bad scintillators:
- the defined energy bands between valence band and excitation band means that energy emitted by the crystal get reabsorbed by the same lattice
- There are only definite energy quanta allowing for the excitation of molecules
- Adding impurity improves the behavior
- There are more intermediate states between valence and excitation band that can be reached by the excited electron
- The emitted light is not completely reabsorbed by the crystal lattice

FIGURE 7-16 Arrangement of NaI(TI) crystal and photomultiplier (PM) tube in a typical scintillation detecto assembly.

Spectrometry with Nal(Tl)

 Good coupling with Photomultiplier by the use of light guide

 Multiplication of electrons, accelerated from a dynode to the other

Spectrometry with Nal(Tl)

- Gaussian shape peak, instead of narrowline.
- The width of the photopeak, ΔE, measured across its points of halfmaximum amplitude is the energy resolution. This is referred to as the full width at half maximum.

$$FWHM(\%) = \frac{\Delta E}{E_{\gamma}} * 100\%$$

Detector efficiency

Efficiency with which detectors converts emission of a source into signal

$$\xi\left(\frac{\gamma \, rays}{sec}\right) = A\left(\frac{dis}{sec}\right) * \, \eta\left(\frac{\gamma \, rays}{dis}\right)$$
$$R = D \, \xi$$

Parameters:

- ξ rate of emission
- A activity
- η gamma per disintegration
- *R* rate of counts
- D efficiency

Multi-channel analyzer

Energy selection is made by multichannel analyser, allowing the entire spectrum to be analysed

- Multi Channel Analyzer:
- 1. Receives in input PMT output signals
- 2. ADC digitizes the signals
- 3. Produces the pulse-height histogram = plot of number of events from the PMTs as function of output amplitude

Channel = specific energy range \rightarrow number of channels can be >1000 \rightarrow complete energy spectra produced

Gamma laboratory with MCA

CAEN mc ² Analyzer			- 0 ×
File Tools View Help			
🛯 🖉 🔜 🚏 🔕 🕪 🟉 🔟 🕨 💆 🔍 🌒 🛟 \leftrightarrow 🌊 🤅	🔍 🕼 🕕		
Histogram		- ×	Acquisition Setup • X
f	· · · · · ·		Channels Board
350			
1 I		MCAFN	S2580_2608/ Import Export
300		U GAEN	General Output
		1001s for Discovery	Run Settings
250			
			Cycle # 1 v Duration (s) 600 v Pause (s) 0 v
₽ 200			🖌 Clear Histograms 🖌 Save Lists 🗌 GPS Enable
150			
100			
50			
The second s	5. T		Auto Apply 🔁 Apply
1000	2000 Channels	3000 4000	۹ (۲
HV Channels 🕂 🐺 Cursor 🤤	× ROI Editor		🖡 🗙 Run Information 🛛 🖡 🗙
HV Channel Pol. PWR HV Range	Cui 📕 Range: - 🖸 🖉 🗖	🛛 🕑 🖉 Done 🛞 Cancel	Run Status: Start
S2580_26087 HV0 POS ON O 1.6 kV - 500 uA V Channel O	Begin End Unc. Centroid	FWHM Resolution Range 0	Gross Net Peak Run Loop: 1
Count 0	555 643 9.56 590.85	53.48 9.05 % 555-643 1	1832 567 36 Real Time (s): 191
			Pause (s): 0
			Tot. Counts: 63462
			Dead Time (s): 1.083
			Gain Stabilizer: OFF
			Run ID: 132
	• • • • • • • • • • • • • • • • • • •		ReadOut Rate 0.02 MB/s Acquisition Connected

- 1. Calibrate MCA with sources
- 2. Measure activity
- 3. Attenuation coefficient measure

Source

²⁴¹Am

Americium-241 is the most important radioisotope of americium from the point of view of the occurrence in environment. The other long-lived isotope ²⁴³Am is produced in nuclear reactors in smaller activity compared to ²⁴¹Am. The activity of ^{242m}Am (half-life 160 years) that originated in nuclear weapons tests was nearly six orders of magnitude lower in comparison with ²⁴¹Pu activity from which ²⁴¹Am in-grows. Americium-241 is produced in nuclear power plants during activation of ²³⁹Pu and ²⁴⁰Pu by neutrons, which is followed by beta decay of ²⁴¹Pu (T_{1/2} = 14.35 years).

Americium -241 is used in many smoke detectors for homes and business, for measure levels of toxic lead in dried paint samples, to ensure uniform thickness in rolling processes like steel and paper production, and to help determine where oil wells should be drilled.

Source

¹³⁷Cs

Cesium-137 (Cs-137), or radium cesium is a radioactive isotope of cesium which is formed as one of the most common fission products from fission nuclear uranium-235 and other fissile isotopes in nuclear reactors and weapons nuclear. It is among the most problematic of the fission products with a medium-short halflife because it spreads easily in nature, due to the high water solubility of the most common chemical compounds of cesium. Small quantities of cesium-134 and cesium-137 were released into the environment during nearly all nuclear weapons tests and some nuclear accidents. Cesium 137 has a half-life of approximately 30.17 years. About 95 percent decays by beta emission to a nuclear isomer barium metastable: barium-137m (Ba-137m). The rest populate directly the ground state of barium-137, which is stable. Ba-137m has a half-life of approximately 153 seconds and is responsible for all emissions of gamma rays in cesium-137 samples. One gram of cesium-137 has a activity of 3,215 terabecquerels (TBq). The photon energy of Ba-137m is 662 keV

Cobalt-60 is a synthetic radioactive isotope of the metal cobalt. Due to its short average life of 5.27 years, cobalt-60 is not found in nature. It is produced artificially by activation neutronics of cobalt-59. Cobalt-60 decays by beta decay negative in the stable isotope nickel-60. The energized nickel-60 core emits two beams gamma with energies of 1.17 and 1.33 MeV per become nickel-60 stable

	Energy	μ/ρ	$\mu_{\rm en}/\rho$				
	(MeV)	(cm^2/g)	(cm^2/g)				
	1.00000E-03	2.911E+03	2.905E+03				
	1.50000E-03	9.536E+02	9.513E+02				
	2.00000E-03	4.206E+02	4.192E+02				
	3.00000E-03	1.288E+02	1.279E+02				
	4.00000E-03	5.466E+01	5.398E+01				
	5.00000E-03	2.792E+01	2.737E+01				
	6.00000E-03	1.608E+01	1.561E+01				
	8.00000E-03	6.750E+00	6.370E+00				
	1.00000E-02	3.481E+00	3.153E+00				
	1.50000E-02	1.132E+00	8.668E-01				
	2.00000E-02	5.798E-01	3.462E-01				
	3.00000E-02	3.009E-01	9.972E-02				
	4.00000E-02	2.304E-01	4.695E-02				
	5.00000E-02	2.020E-01	3.082E-02				
Americium —	→ 6.00000E-02	1.868E-01	2.508E-02				
	8.00000E-02	1.695E-01	2.247E-02				
	1.00000E-01	1.586E-01	2.297E-02				
	1.50000E-01	1.406E-01	2.567E-02				
	2.00000E-01	1.282E-01	2.772E-02				
	3.00000E-01	1.111E-01	2.990E-02				
	4.00000E-01	9.947E-02	3.073E-02				
• •	5.00000E-01	9.079E-02	3.093E-02				
Cesium	→ 6.00000E-01	8.395E-02	3.079E-02				
	8.00000E-01	7.372E-02	3.005E-02				
	1.00000E+00	6.628E-02	2.909E-02				
Cobalt —	1.25000E+00	5.927E-02	2.780E-02				
	1.50000E+00	5.395E-02	2.657E-02				
	2.00000E+00	4.630E-02	2.444E-02				
	3.00000E+00	3.715E-02	2.135E-02				

NIST database

• Table shows mass attenuation coefficient at different energy for the polyethylene terephthalate

CAEN mc ² Analyzer										_	o ×
File Tools View Help											
	1 ↔ 2 6	🛯 🐗 🏠 🚺									
Histogram	•						▼ X	Acquisition Setup			•
· · · · · ·					: '						
+								Channels Board			
						CAEN		<controlled channel=""></controlled>		1	mport Export
		-				JAEr	teritari de la constante de la	Input Signal Trigge	r Energy Filter	Tr. Reset Cou	pling & TRP
† 1		Energy Calibration			1	Tools for Discove	ry	DC 0%-1			
				Energy Units KeV	\sim			DC Offset	Input Range		
		Channel Value	Deviation						input hunge		
		1354.9 1173.2		Energy Calibration					Fine Gain	1.0000	* *
		1006.33 1332.5		Linear 🗸							
			Remove	y=A + B*x					Pulse Polarity	POSITIVE	~
			Remove A	A=-16.435506807034					Impedance		
47 9			Cursor	P_0 07003450340360	0						
• - · · · · · · · · · · · · · · · · · ·			Carbon	B=0.07002430240300					Decimation		\sim
			Centroid								
		Import E	Export	OK Ca	ancel			50.00 🜲 %			
H Manada					:						
and the second								Auto Apply			Apply
1000	adabar da Kalendar da Angela d	200	0		3000		4000				
Channels II X	Ourson I		anneis						п	X Run Inform	ation I
	Curson	Cui	1			a				D = 0	
HV Channel Pol. PWR HV Range	Channel 0	Hange:			U Done U	Cancel				- Bun	
	Count 0	Begin 607	915 37.96	Centroid F 831.43	-WHM Resolution 68.33 20.25 %	on Range 607-915	Gross 1050	121	Peak 10	- Real Tir	100p. 0
	Count 0	694	837 82.65	783.44 9	7.11 12.40 %	694-837	485	44	9	Pau	se (s): 0
								1		Tot C	vunte: 0
										Dead Tir	ne (s): 0
										Gain Sta	pilizer: OFF
										B	in ID: 0
							Rea	dOut Rate 0.00 M	B/s Acquisit	ion 🔍 No	t Connected

Open calibration setup and set ⁶⁰Co peaks channels

R = D A $\mathbf{N} = D \mathbf{A} \Delta t$ $\frac{\mathrm{N}}{D\Delta t} = A$

If we assume D is equal to 50% because of geometry, obtain A

Measure the distance from the source to the detector, measure the thickness of the slice, position the slice in front of the detector

Measure the angle between the the source and the edge of the detector, like in figure.

$$\langle X \rangle = \frac{1}{2} \left(1 + \frac{1}{COS\theta} \right)$$

MEASURE OF ATTENUAT	ION COEFFI	CIENT										Atten	uation				
												Atten	uation		v = 1353	26a-0.123x	
Shield	I	x (cm)	x corrected (cm)	sigma I	sigma x (cm)	distance (cm)			160000						y = 1555	200	
no shield	134978	0	0	367,3935	0,001	10			140000								
shield1	129355	0,387	0,402196473	359,6596	0,001						e						
shield2	126537	0,539	0,560165113	355,7204	0,001	theta	22		120000					-			
shield3	118536	0,931	0,967557923	344,2906	0,001	correction	1,039267										
shield1+shield3	115643	1,318	1,369754395	340,0632	0,001				100000						•		
shield2+shield3	113298	1,47	1,527723036	336,5977	0,001												
shield1+shield2+shield3	105802	1,857	1,929919509	325,2722	0,001				80000								
									00000								
									60000								
									00000								
polyethylene therephtala	te (mylar)																
0,1158									40000								
polymethyl methacrylate									20000								
0,1035																	
									0								
polyvynil chloride								-0,5	(0	0,5		1	1,5		2	2,5
0,1166	i																

Try with and without correction factor equal $\langle X \rangle = \frac{1}{2} \left(1 + \frac{1}{COS\theta} \right)$