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Dynamical system

Definition (Dynamical system)

Let T = R or T = Z, respectively, and let X be a metric space. A dynamical system is a triple
(Φ,T, X), where the continuous mapping Φ : T ×X → X satisfies the following properties:

· Initial value (identity) condition: Φ0x = x for all x ∈ X

· Group property: Φs+tx = ΦsΦtx = ΦtΦsx for all x ∈ X and for all s, t ∈ T.

− T is called the parameter space.

− X is called the phase space.

− Φ is called the evolution operator.
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Dynamical system

· If T = R, then the dynamical system is called continuous, and in case T = Z, one has a
discrete dynamical system.

· The second property of a dynamical system is called group property because the family of
mappings {Φt : t ∈ T} of X into itself forms a group under composition.

· If the family of mappings {Φt : t ∈ T+
0 } of X into itself forms a semigroup under

composition, then the triple (Φ,T+
0 , X) is said to be a semi-dynamical system.

· The parameter space T can also be multi-dimensional, for e.g. T = Rd, d ≥ 2. In this case
the evolution operator Φ is a generalized non-autonomous evolution operator.
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Dynamical system

Example (Shift operator)

Let T = R, d ∈ N, let X be the space C(R,Rd), of bounded continuous functions x : R → Rd

with the norm ∥x∥X = sup
t∈T

x(t) for all x ∈ C(R,Rd). Let (θt)t∈R be the family of shift

operators on X, defined by θtx = x(t+ ·) for all t ∈ R. Define Φ on T ×X as Φ0x = x and
Φtx = θtx for all t ∈ R. Then (Φ, X,T) forms a continuous dynamical system.
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Dynamical system

Example (ODEs)

Let T = R, X = Rd and A ∈ L(X,X) be a bounded linear operator

d

dt
x(t) = A x, t > 0

x(0) = x0, x0 ∈ X

Defining Φt := eAt, then (Φt, X,T
+
0 ) forms a semi-dynamical system.
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Dynamical system

Example (PDEs)

Let T = R, D ⊂ Rd, X = L2(D) and A ∈ L(D(A), X) be a closed linear operator (e.g.

A := ∆ =
∑d
i=1 ∂

2
xi

)

d

dt
x(t) = A x, t > 0

x(0) = x0, x0 ∈ X

Let (Tt)t≥0 : X → X be the operator semi-group generated by A, then defining Φt := Tt, we
get (Φt, X,T

+
0 ) forms a semi-dynamical system.

· Differential equations provide a way to specify dynamical systems.
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Differential equations

Let T = R, X = Rd and F : T ×X → X be a smooth vector field. Consider the initial value
problem (IVP)

d

dt
x(t) = F (t, x(t)), T+

0 ∋ t > 0

x(0) = x0, x0 ∈ X

Alternatively, the IVP can be written in the following integral form:

x(t) = x0 +

∫ t

0

F (s, x(s)) ds

· Existence: If F ∈ C(T ×X;X) then there exists at least one solution.

· Uniqueness: Additionally, if F is locally Lipschitz continuous, i.e. for any compact set
K ∈ T ×X there exists a corresponding Lipschitz constant LK such that:

∥F (t, x1)− F (t, x2)∥X ≤ LK∥x1 − x2∥X , ∀(t, x1), (t, x2) ∈ K,

then we get global uniqueness of the solution.
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Deterministic methods

Based on Taylor series expansion of the solution x(t) at t0, for τ > 0 we get

x(t0 + τ) = x(t0) + τ x′(t0) +O(τ2) = x0 + τ F (t0, x0) +O(τ2).

Letting tn = t0 + nτ , xn = x(tn) we get the following numerical schemes:

· Euler method: xn+1 = xn + τF (tn, xn),
xn+1 = xn + τF (tn+1, xn+1),

· s-stage Runge-Kutta method:

ki = F (t+ ciτ, xn + τ

i−1∑
j=1

aijkj), i = 1, . . . , s

xn+1 = xn + τ

s∑
i=1

biki

· Collocation method: Find polynomial g ∈ Pd
s of degree s such that

− g(tn) = xn
− g′(tn + ciτ) = F (tn + ciτ, g(tn + ciτ))
− xn+1 = g(tn + τ)
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Deterministic methods

· Collocation method: Let {L1, . . . , Ls} be the Lagrange basis of the polynomial space Pd
s−1

of degree s− 1 with respect to the nodes c1, . . . , cs, with 0 ≤ c1 < · · · < cs ≤ 1, then:

− ki = g′(tn + ciτ)

− g′(tn + δτ) =
∑s
j=1 kjLj(δ)

− g(tn + ciτ) = xn + τ
∫ ci
0
g′(tn + δτ)dδ = xn + τ

∑s
j=1 aijkj

aij =
∫ ci
0
Lj(δ)dδ, for i, j = 1, . . . , s.

− ki = F (tn + ciτ, xn + τ
∑s
j=1 aijkj), i = 1,. . . , s.

− xn+1 = g(tn + τ) = xn + τ
∫ 1

0
g′(tn + δτ)dδ = xn + τ

∑s
j=1 bjkj ,

bj =
∫ 1

0
Lj(δ)dδ, j = 1, . . . , s.

· Results in a set of non-linear equations which needs to be solved using for e.g. Newton
method.

· Is equivalent to implicit s-stage Runge-Kutta method.
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Stochastic methods

· Monte carlo integration: Let f : Rd → Rd, we are interested in numerical approximation Î
of the integral I =

∫
D
f(x)dx, D ⊂ Rd compact. Let P = {x0, . . . , xn} represent the

partitioning of the set D.

· Deterministic approach is to use some type of quadrature rules such as:

− Midpoint rule: În =
∑n
i=1 f(mi)∆xi, ∆xi := xi − xi−1 and mi =

xi+xi−1

2

− Trapezoidal rule: În =
∑n
i=1[f(xi) + f(xi−1)]

∆xi

2 ,

− General quadrature rule: În =
∑n
i=1 wif(x

∗
i ), x

∗
i ∈ [xi−1, xi]

· I = limn→∞ În

· Let ε ∈ (0, 1). In general, it can be shown that: to achieve a given ε accuracy the

minimum number of discretization points n(ε) required is proportional to |D|
εd

.

· Thus larger the value of d, i.e. the dimension of the integration domain, exponentially
higher the number of discretization points needed. This is called the curse of
dimensionality.
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Stochastic methods

· Monte carlo integration: A simple method
to get rid of this curse is to replace the
deterministic grid points {xi}ni=0 by
random variables {Xi}ni=0.

· I =
∫ b
a
f(x)dx = EX∈U(D)[f(X)]

· Consequently, we get that

În = |D|
n

∑n
i=1 f(Xi).

· It can be shown that the minimal number
of samples, n(ε) required to achieve a

given accuracy ε is proportional to σ2(f)
ε2 . Figure: MC integration

One can now, apply this approach to solve differential equation.
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Stochastic methods

Consider the initial value problem (IVP)

d

dt
x(t) = F (t), with x(0) = x0, x0 ∈ X

Its solution can be written as
x(t) = x0 +

∫ t

0

F (s) ds = x0 +

N∑
i=1

∫ ti

ti−1

F (s) ds

= x0 +

N∑
i=1

ES∈U(ti−1,ti)[F (S)]

= x0 +

N∑
i=1

[ ti−1 − ti
M

M∑
k=1

F (Sk)
]

Writing in an iterative manner we get

xn+1 = xn + ES∈U(tn,tn+1)[F (S)]

= xn +
tn+1 − tn

M

M∑
k=1

F (Sk).
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Stochastic methods

Similarly, for nonlinear IVP

d

dt
x(t) = F (t, x), with x(0) = x0, x0 ∈ X

we get

xn+1 = xn + ES∈U(tn,tn+1)[F (S, x(S))]

= xn +
tn+1 − tn

M

M∑
k=1

F (Sk, xn).

Let F (t, x) := t
√
|x|+ sin3(π2 t)− 3H(t− 2),

with H being the Heaviside function, then the
MC integration based solution is as shown in
the Figure on the right.

Figure: MC based ODE integration
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Statistical problem

· Consider a set of data D comprising of pairs for inputs and outputs

D := {(X1, Y1), . . . , (XN , YN )} ⊂ X×Y

assumed to be independent and identically distributed observations sampled from an
unknown probability distribution P.

· The task is to find a mathematical relation, F , between the input X ∈ X and the output
Y ∈ Y. In other words, find a mapping X 7→ F (X) =: Ŷ such that F : X → Y fits
(explains) the observed data D is some optimal sense.

· To measure the quality of the estimated relation F , we need to define a loss functional

L : Y ×Y → R

such that L(Y, Ŷ ) is able to quantify the closeness between the observed output Y and the
estimated output Ŷ .
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Typical loss functions

Some common loss functions are

· L(Y, Ŷ ) = ∥Y − Ŷ ∥2L2(Y), squared L
2 norm

· L(Y, Ŷ ) = ∥Y − Ŷ ∥2pLp(Y), squared L
p norm with p ∈ (0,∞]

· L(Y, Ŷ ) = −H(Y, Ŷ ) = EY [log Ŷ ], cross-entropy of Ŷ with respect to Y

The quality of the estimated function F is given by:

E(F ) = EP[L(Y, F (X))] =

∫
X

L(Y, F (x))P(dx)

≈ 1

N

N∑
i=1

L(Yi, F (Xi))

⇒ F can be estimated by solving the following statistical optimization problem

F̂ = argmin
F

E(F )

If F = F (·; θ) is parameterized by θ, then

θ̂ = argmin
θ

E(F (·; θ)).
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Typical models for function F

· The type of function models used can be categorized into parametric and non-parametric
models.

· Here we consider only parametric models

· Some common parametric function models are:

− Linear model: F (X; θ) = aTX + b, θ = (a, b)

− Quadratic model: F (X; θ) = aTX2 + bTX + c, θ = (a, b, c)

− Polynomial model: F (X; θ) =
∑n
i=1 θ

T
i X

i, θ = (θi)

− Exponential model: F (X; θ) = ea
TX+b, θ = (a, b)

− Perceptron model: F (X; θ) = σ(
∑n
i=1X

T
i wi + b), θ = ((wi), b)

− Multi-layer-perceptron model:

F (X; θ) = σ
(∑n

k=1 σ
(
. . . σ(

∑n
i=1X

T
i wi + b1) + bm−1

)
+ bm

)
, θ = ((wi), (bi))
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Feedforward neural network

Figure: Example of a feedforward neural network 1

1
https://github.com/PetarV-/TikZ/tree/master/Multilayer%20perceptron
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Universal approximation theorems

Theorem ( [7,8] Single layer and arbitrary width )

Let σ : R → R be a continuous activation function other than a polynomial. Let d,D ∈ N then
for every continuous function f : Rd → RD, every compact subset K ⊂ Rd and every ε > 0
there exists a single-layer neural network f̂ = η0 +

∑N
j=1 ηjσ(w

T
j x+ bj) with N ∈ N, such that

sup
x∈K

|f̂(x)− f(x)| ≤ ε.

Theorem ([9,10] Constrained width and arbitrary depth)

Let X ⊂ Rd be compact. Let σ : R → R be any non-affine continuous function that is
continuously differentiable with non-zero derivative atleast at one point. Let N σ

d,D:d+D+2

denote the space of feed forward neural networks with d input neurons, D output neurons, and
of arbitrary depth each with d+D + 2 neurons, such that hidden neurons have activation
function σ and output neurons have identity activation function. Then given any ε > 0 and
any f ∈ C(X,RD), there exists f̂ ∈ N σ

d,D:d+D+2 such that sup
x∈X

|f̂(x)− f | ≤ ε.
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Problem formulation

Problem

Let I ⊂ (0,∞) be time interval, D ⊂ Rd be an open bounded domain and DI = I ×D denote
the open space-time cylinder. Let a semi-dynamical system be specified by a generic
differential equation of the form

F (t, x, y(t, x), ∂ty(t, x),∇xy(t, x),∇2
xy(t, x)) = 0 on DI ,

G(t, x, y(t, x),∇xy(t, x)) = 0 on ∂D× I,

y(0, x) = y0(x) ∀x ∈ D,

where y : DI → R, F : I ×D× R × R × Rd × Rd×d → R, G : I × ∂D× R × Rd → R, y0 : D → R.
The task is to find the solution y(t, x) for all (t, x) ∈ DI .

The goal is to computationally solve the above equation using a neural network.
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General steps

· Let y(t, x) be given by a surrogate function ψ(t, x; θ) parameterized by θ ∈ Rn. This is to
say let y(t, x) = ψ(t, x; θ).

· ψ(t, x; θ) represents a neural network with internal parameters θ.

· define a loss function to enable learning of θ parameter.

· possible types of loss functions:

− Residual loss: E(θ) =
∫
DI
F (t, x, ψθ, ∂tψθ,∇xψθ,∇2

xψθ)
2dx dt

− Variational formulation:

E(ψθ) =

∫
DI

f(t, x, ψθ, ∂tψθ,∇xψθ,∇2
xψθ)dx dt

ψ̂θ = argmin
ψθ

E(ψθ)

θ̂ = argmin
θ

E(ψθ)
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Monte carlo integration

For (ti, xi) =: ξi ∈ U(DI) we can write

E =

∫
DI

F (t, x, ψθ, ∂tψθ,∇xψθ,∇2
xψθ)

2dx dt

∝ |DI |
N

N∑
i=1

F (ξi, ψθ(ξi), ∂tψθ(ξi),∇xψθ(ξi),∇2
xψθ(ξi))

2

=
|DI |
N

N∑
i=1

Ei

Thus ξi ∈ DI can be interpreted as a training sample.

· ξi can be some fixed collocation points that may be given as discrete mesh (uniform or
triangulated), quasi-uniformly distributed points

· potentially infinite training data
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Initial and boundary conditions

Initial and boundary conditions can be enforced in the following manner.

· soft assignment: add penalty term to the loss function

E(θ) = ∥F (t, x, ψθ, ∂tψθ,∇xψθ,∇2
xψθ)∥2DI

+ λ1∥G(t, x, ψθ,∇xψθ)∥2∂DI

+ λ2∥ψθ(0, x)− y0(x)∥2D

· hard assignment: use an ansatz function that satisifies the boundary condition by
construction.

ψθ(t, x) = α(t, x) + β(t, x) + γ(t, x, ϕθ)

where α satisfies the initial condition, β satisfies the boundary condition and γ is zero on
the boundary and only valid on DI .
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Example

Consider the 1D linear diffusion equation on D = (0, 1) and t > 0

∂ty(t, x) = ∂2xy(t, x) + f(t, x), x ∈ (0, 1), t > 0

y(t, 0) = g0(t), y(t, 1) = g1(t)

y(0, x) = y0(x), x ∈ (0, 1)

For this case, one could use the following ansatz function:

ψθ(t, x) =

α(t,x)︷ ︸︸ ︷
δ0(t)y0(x) +

β(t,x)︷ ︸︸ ︷
δt>0(t)δ{0,1}(x)[(1− x)g0(t) + xg1(t)]

+

γ(t,x,ϕθ)︷ ︸︸ ︷
(1− e

t
1+t )[x(1− x)ϕθ]

⇒ ψθ(0, 0) = y0(0), ψθ(0, 1) = y0(1), ψθ(0, x) = y0(x)

⇒ ψθ(t, 0) = g0(t), ψθ(t, 1) = g1(t), ψθ(t, x) = γ(t, x, ϕθ)
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Irregular domain

To deal with complex and irregular domains D, one can proceed in the following manner:

· define a distance function D(x) which represents the distance to the boundary ∂D and
use it construct the ansatz function.

· more practical would be to define the ansatz function as:

ψθ(t, x) = D(x)P (t)y0(x) + β(t, x) + (1− P (t))D(x)ϕθ

and let D(x), P (t) and β(t, x) be approximated again by some neural network-

− Dη : D → R to approximate D

− βκ : ∂D× I → R to approximate β(t, x) i.e. y(t, x) on ∂D× I.

− Pρ : Ī → R to some smooth time dependent function such that Pρ(0) = 1, e.g. e
t

1+t .
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1D advection equation

We want to solve the following PDE:

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 on DI

ϕ(0, x) = v on D for t = 0.

· The independent variables (i.e, x and t) are used as input values for the NN, and the
solution (i.e. ϕ) is the output.

· In order to find the solution, at each step the NN outputs are derived w.r.t the inputs.

· The loss function that matches the PDE is built and the weights are updated accordingly.
If the loss function goes to zero, we can assume that our NN is indeed the solution to our
PDE.

· We can also try to find a general solution for different values of u, v and also D so it will
be set also as an input.
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1D advection equation

Figure: Simulation of 1D advection equation

S.A. Hiremath NN for dynamical systems 27



Reaction diffusion equation

In this example we are going to solve a reaction diffusion equation.

ut +∇ · (σ∇u) = ρu(1− u) on DI

∇nu = 0 on ∂DI

u0 = v on D for t = 0.

Figure: Simulation of 1D advection equation
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Vortex transport equation

In this example we are going to solve the Euler equations for an isentropic two-dimensional
vortex in a full-periodic square domain.

ρt +∇ · (ρu) = 0 on DI

(ρu)t + (u · ∇)(ρu) +∇p = 0 on DI

u = v, ρ = r on ∂DI

u0 = u0, ρ0 = r0 on D for t = 0.

Figure: Simulation of 1D advection equation
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Lotka-Volterra equation

We want to solve the following ODE:

dx(t)

dt
= αx(t)− βx(t)y(t) for t > 0

dy(t)

dt
= −δy(t) + γx(t)y(t) for t > 0

x(0) = x0, y(0) = y0 for t = 0.

Figure: Simulation of Lotka-Volterra equation
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