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Introduction to Machine Learning

“Learning is any process by which a system improves 
performance from experience.”

- Herbert Simon

Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that
• improve their performance P
• at some task T
• with experience E.
A well-defined learning task is given by <P, T, E>.
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Machine Learning world
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When Do We Use Machine Learning?

ML is used when:
• Human expertise does not exist (navigating on Mars)
• Humans can’t explain their expertise (speech recognition)
• Models must be customized (personalized medicine)
• Models are based on huge amounts of data (genomics)
• Fundamental science à HEP

Learning isn’t always useful:
• There is no need to “learn” to calculate payroll
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More examples of tasks that are best solved by using ML

• Recognizing patterns:
– Facial identities or facial expressions
– Handwritten or spoken words
– Medical images

• Generating patterns:
– Generating images or motion sequences

• Recognizing anomalies:
– Unusual credit card transactions
– Unusual patterns of sensor readings in a nuclear power 

plant
• Prediction:

– Future stock prices or currency exchange rates
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• Web search
• Computational biology
• Finance
• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks
• Debugging software
• Fundamental Science à HEP
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• Supervised (inductive) learning
– Given: training data + desired outputs 

(labels)
• Unsupervised learning

– Given: training data (without desired 
outputs)

• Semi-supervised learning
– Given: training data + a few desired 

outputs
• Reinforcement learning

– Rewards from sequence of actions
8
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Supervised Learning
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Supervised Learning: Regression
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Supervised Learning: Classification
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Unsupervised Learning
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• Independent component analysis – separate 
a combined signal into its original sources

Image credit: statsoft.com Audio from 
http://www.ism.ac.jp/~shiro/research/blindsep.html

Unsupervised Learning
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Reinforcement Learning
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• Given a sequence of states and actions with 
(delayed) rewards, output a policy
– Policy is a mapping from states à actions that 

tells you what to do in a given state

• Examples:
– Credit assignment problem
– Game playing
– Robot in a maze
– Balance a pole on your hand

Reinforcement Learning
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Learning algorithm and Artificial neuron or Perceptron
O For our purpose we define a learning algorithm (LA) as a composite entity including:

O a data set, for which we search for patterns
O a model (for our discussion here, this will be represented by weights)
O an optimisation algorithm (a recipe to adjust/change weights)
O a loss function
O LA is able to learn based on the data that is „given” to it
O To be able to describe the learning process in quantitative way we define, on top of the previous

notions, Experience, Class of Tasks and Performance Metric
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The algorithm
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Feed-forward neural networks

Most of ML is concerned with how to find the 
weights such that your NN produces
accurate opinions

• Learning can be viewed as using direct
or indirect experience to approximate
a chosen target function.

• Function approximation can be viewed
as a search through a space of 
hypotheses (representations of 
functions) for one that best fits a set of 
training data.

• Different learning methods assume 
different hypothesis spaces
(representation languages) and/or 
employ different search techniques.
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The neural network zoo

https://www.asimovinstitute.org/neural-network-zoo/

Neural network architectures popping up every
now and then, it’s hard to keep track of them all

This is cheat sheet containing many of the 
NN architectures. 
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Machine Learning for HEP
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Machine learning use cases at HEP colliders
– Fast simulation
– Tracking with unsupervised learning
– Jet classification
– Particle ID
– Event-based classification
– Physics analysis
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Intro: Classification at Colliders
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Classification techniques at Colliders
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Use Cases at Colliders
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Neural Network Architectures
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Neural Network Architectures
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Neural Network Architectures
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Neural Network Architectures
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MC Use Cases at Colliders
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Tracking with ML
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Jet classification with ML
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Strategy for ML event classification
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11

State of the Art Applications of Machine 
Learning for daily life
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• Nevada made it legal for 
autonomous cars to drive on 
roads in June 2011

• As of 2013, four states (Nevada, 
Florida, California, and Michigan) 
have legalized autonomous cars

Autonomous cars
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Input images

Samples from 
feedforward 
Inference 
(control)
Samples from 
Full posterior 
inference

Generating posterior samples from faces by “filling in” experiments
(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Inference from Deep Learned models
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A Typical Speech Recognition System

ML used to predict of phone states from the sound spectrogram

Deep learning has state-of-the-art results

#HiddenLayers 1 2 4 8 10 12

WordError Rate% 16.0 12.8 11.4 10.9 11.0 11.1

Baseline GMM performance = 15.4%
[Zeiler et al. “On rectified linear units for 
speech recognition” ICASSP 2013]

Machine Learning in Automatic Speech Recognition
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Conclusions

• Machine learning are part of our daily life and evolve rapidly for
mutiple purposes and different complex problems.

• Wide variety of machine learning techniques available for collider
classification, regression, and fast simulation tasks

• Feature-based classifiers widely used in LHC experiments and under
study for future colliders

• Deep learning approach with low-level inputs has been shown to
provide better performance for some problems

• Many different applications available on the market

Enjoy the benefit of ML in your daily life
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