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Introduction to Machine Learning
.

“Learning is any process by which a system improves
performance from experience.”

- Herbert Simon

Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that
e improve their performance P
e atsome task T
e with experience E.
A well-defined learning task is given by <P, T, E>.
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Comparison of different approaches
.

Traditional programming
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Machine learning
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Machine Learning world
.
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WHAT IS
MACHINE
LEARNING?

Machine learning algorithms build a
model based on sample data, known
as "training data", in order to make
predictions or decisions without
being explicitly programmed to do so.




When Do We Use Machine Learning?
.

ML is used when:

e Human expertise does not exist (navigating on Mars)

e Humans can’t explain their expertise (speech recognition)
e Models must be customized (personalized medicine)

e Models are based on huge amounts of data (genomics)

e Fundamental science > HEP

Learning isn’t always useful:
e There is no need to “learn” to calculate payroll
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More examples of tasks that are best solved by using ML
.

e Recognizing patterns:

— Facial identities or facial expressions

— Handwritten or spoken words

— Medical images
e Generating patterns:

— Generating images or motion sequences
e Recognizing anomalies:

— Unusual credit card transactions

— Unusual patterns of sensor readings in a nuclear power
plant

e Prediction:
— Future stock prices or currency exchange rates
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ML applications
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Web search

Computational biology
Finance

E-commerce

Space exploration

Robotics

Information extraction

Social networks

Debugging software
Fundamental Science > HEP




Type of Learning

» Supervised (inductive) learning

— Given: training data + desired outputs
(labels)

 Unsupervised learning

— Given: training data (without desired
outputs)

» Semi-supervised learning

— Given: training data + a few desired
outputs

» Reinforcement learning

— Rewards from sequence of actions
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Supervised Learning

.
The goal of supervised learning is

to learn a model from labeled
training data that allows us to make
predictions about unseen data.

Labeled Data
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Supervised Learning: Regression

The goal of the
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prediction of
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Supervised Learning: Classification

» The goal of the classification is to predict the Y A
categorical class labels of new data based on past e ClassA
observations. Examples are:

« EMAIL SPAM: binary classification

« HANDWRITTEN DIGIT RECOGNITION: multiple
class classification
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Unsupervised Learning
.
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The goal of unsupervised
learning is to explore the
structure of data in order to
extract meaningful
information without the
guidance of a known outcome
variable or reward function

Clustering: organize
information into meaningful
subgroups (clusters) without
having any prior knowledge
of their group memberships

Dimensionality Reduction




Unsupervised Learning

e Independent component analysis — separate
a combined signal into its original sources
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Reinforcement Learning

™ Agent
slate reward action

Sf R 1 A’

LR
5., | Environment
i \

The goal of reinforcement
learning is the development
of a system which improves PACMAN GAME
by interacting with the
environment
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Reinforcement Learning
.
e Given a sequence of states and actions with
(delayed) rewards, output a policy

— Policy is a mapping from states = actions that
tells you what to do in a given state

e Examples:
— Credit assignment problem
— Game playing
— Robot in a maze
— Balance a pole on your hand
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Learning algorithm and Artificial neuron or Perceptron

B
O  For our purpose we define a learning algorithm (LA) as a composite entity including:

O a data set, for which we search for patterns

O a model (for our discussion here, this will be represented by weights)

O an optimisation algorithm (a recipe to adjust/change weights)

O aloss function

O LAis able to learn based on the data that is ,given” to it

O To be able to describe the learning process in quantitative way we define, on top of the previous
notions, Experience, Class of Tasks and Performance Metric
7 0 1943 with McCullock-
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The algorithm

0 The perceptron algorithm, then goes like that:
0 Initialise the weights vector to 0 or ,,something small”
0 For each training data sample ¥¥ do: ‘

0 Get the output value (class label) 7, using the unit ste
function

0 Update the weights accordingly (update concerns all 1§he
weights in one go)
wj = wj + Aw] !
0 We can wrltgw] (y® = y0) - £

0 The second formula is called perceptron learning rule, a
| called the learning rate (just a number between 0 and 1
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Feed-forward neural networks

e Learning can be viewed as using direct
or indirect experience to approximate
a chosen target function.

e Function approximation can be viewed
as a search through a space of
hypotheses (representations of

functions) for one that best fits a set of

training data.

e Different learning methods assume
different hypothesis spaces
(representation languages) and/or
employ different search techniques.
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Most of ML is concerned with how to find the
weights such that your NN produces
accurate opinions
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The neural network zoo
B

" Input Cell
© Backfed Input Cell
A Noisy Input Cell
@ Hidden cell
© Probablistic Hidden Cell
@ spiking Hidden Cell
® copsulecell
@ outputcell
@ Matchinput Output Cell
@ recurrent Cell
@ Memory cell
@ Goted Memory Cell
Kernel

© convolution or Pool

Markov Chain (MC)

Hopfield Network (HN) ~ Boltzmann Machine (BM)

A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org
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Neural network architectures popping up every
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Liquid State Machine (LSM)  Extreme Learning Machine (ELM)  Echo State Network (ESN)
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Machine Learning for HEP

Future Circtlar Collider {(FCC)

Machine learning use cases at HEP colliders
— Fast simulation
— Tracking with unsupervised learning
— Jet classification
— Particle ID

— Event-based classification
— Physics analysis

N. De Filippis 20
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Intro: Classification at Colliders

e

A

nearby
tracks

prompt electron

(signal)

VS.

nearby
tracks

jet — electron fake
(background)

How do we identify electrons at LHC?

21



Classification techniques at Colliders

1. Cut-based selection
— Apply requirements on

human-designed features

-

2. Multi-Variate Algorithms (MVA)

3. Deep Learning

machine learning

Combine features using neural networks,
boosted decision trees, likelihoods, etc.

Exploit correlations between features

Feed low-level data (e.g. calorimeter
cells) directly to deep neural networks

Potential to exploit information not
contained in features
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e signal efficiency

single particle showers in a
high-granularity 3D calorimeter

electromagnetic shower hadronic shower

1.0
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e vs. n* ROC curve [1]

N
/ improved
~ performance
— DNN (cells)
——— DNN (features)
. BDT
0.0 0.1 0.2 0.3 04 05

n* background efficiency

[1] BH, Farbin, Khattak, Pacela, Pierini, Vlimant, Spiropulu, Wei, Proceedings of the Deep Learning
for Physical Sciences Workshop at Neural Information and Processing Systems (NIPS17)
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1. Generation
of truth information

2. Simulation
of detector response

generative models
(e.g. calorimeter showers)
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Use Cases at Colliders

<

MC

[ ]

Physics
models

Wizard >

Parton

< Pythia >
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MCParticle

Simulation
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Simulated
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physics!
.

Physics
( Detector ) parameters
< Analysis >

Physics
objects

< High level >
( DA ) reconstruction

Reconstructed
particle

Tracks

data

!

A 4

Detector hits

unsupervised classification
(e.g. tracking, clustering,
track-cluster matching)
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4. Analysis
of physics objects

event classification
(e.g. ttH vs. tt+bb)

event regression
(e-g- MHiggs)

3. Reconstruction
of physics objects

object classification
(e.g. particle ID, b-tagging)

object regression
(e.g.E, 6, ¢)




Neural Network Architectures

« Fully-Connected Networks (FCN)
— Multiple layers of fully inter-connected

neurons with variable weights

— Structure-agnostic — widely applicable

N. De Filippis

s can be...
features

or

low-level data

(calo cells, track / cluster /
particle flow p4’s, etc.)
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Neural Network Architectures

Fully-Connected Networks (FCN)

Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable

Convolutional Neural Networks (CNN)

— Specialized layers (“convolutional filters”)

identify structures at different scales

— Computer vision / imaging applications

— Assumes fixed-length input data

INPUT

CONV POOL CONV POOL FC OUTPUT

- Dog:
epr0|t§ e
extensive Bird: )}
computer { soat [
vision R&D ' pog: IED

Cat:
mm:!ﬁa
Boat: §FA
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Convolved

Convolutions Feature Layers

e LI s
B H

Max-Pooling
W'— WZ event
Repeat
Wji QCD jet

(O

05 1

1

[1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
“Jet Images — Deep Learning Edition”, JHEPQ7 (2016) 069
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Neural Network Architectures

.
Fully-Connected Networks (FCN) ®

® ®
— Multiple layers of fully inter-connected Li%j‘,\ = 1 ] 1 L] l .
& ©

neurons with variable weights
— Structure-agnostic — widely applicable - ®

>
»

« Convolutional Neural Networks (CNN) A

— Specialized layers (“convolutional filters”)
identify structures at different scales

— Computer vision / imaging applications

— Assumes fixed-length input data ,
jet «—— sentence

constituents «—— words
type, pt, N, ® «— letters

- Recurrent Neural Networks (RNN)

— Cyclical structures allow for
variable-length input data
» e.g. Particle Flow Candidate p4’s

— Language processing applications I

“pm_pt3.5_etal.1_phi0.2 pp_pt5.6_eta0.3_phi1.8 g pt10.5_etal.4_phi0.3 pp_pt3.5_etal.1_phii.2.”

exploits extensive language processing and Louppe, Cho, Becot, Cranmer, QCD-Aware RNNs for Jet Physics, 1702,00748
Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3

translation R&D (e.g. google translate) ATLAS, b-tagging with RNNs, ATL-PHYS-PUB-2017-003
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Neural Network Architectures

* Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable

INPUTS/

« Convolutional Neural Networks (CNN) e asy ntl: |
— Specialized layers (“convolutional filters”) [ s
identify structures at different scales T |
— Computer vision / imaging applications g
— Assumes fixed-length input data \

- Recurrent Neural Networks (RNN)

— Cyclical structures allow for generated output images

variable-length input data (for 3 ATLAS ECAL layers)
» e.g. Particle Flow Candidate p4’s

— Language processing applications

* Generative Adversarial Networks (GAN)

— nerate ensembles of pseudo-data
G P Paganini, de Oliveira, Nachman, CaloGAN for

— Fast simulation applications 3D particle showers, PRD 97, 014021 (2018)




MC Use Cases at Colliders

* Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable _ ;
J Y app classification

« Convolutional Neural Networks (CNN) * objects: jet classification, particle 1D, etc.

— Specialized layers (“convolutional filters”) | * events: tzH(bb) vs. tt+ bb, SUSY vs. tf , efc.
identify structures at different scales * “supervised” (labeled data) or “unsupervised

— Computer vision / imaging applications
— Assumes fixed-length input data

—

measurements with regression
* objects: jet and lepton energies and angles

« Recurrent Neural Networks (RNN) - events: total / hadronic / missing energy, my

— Cyclical structures allow for
variable-length input data
» e.g. Particle Flow Candidate p4’s
— Language processing applications

—

« Generative Adversarial Networks (GAN)
— Generate ensembles of pseudo-data
— Fast simulation applications

_ fast simulation
e.g. particle showers in calorimeters
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Tracking with ML

going from hits... to tracks... is computationally expensive:

E-100:""|""|""|""l""l'"'I""I""I"“ €
: E. Reconstruction of 2017 pp data, (s =13 TeV 3
= 90 E~  in Athena release 21.0.37 tuned for (1) = 30 8
[} - onIntel’ Xeon CPU E5-2630 v3 ~
s 80 — low-j1 reference runs 10862 luminosity blocks 8
) C W high-irun335302 463 luminosity blocks . 102 ©
._E 705_ ComputingandSoftwarePublicResults .- %‘
= 60 ¥ 2
T % £
~ 50 5 =]

40F & 10

30F- S

20F- =

10;— - - ATLAS Preliminary 1

:IIIIIIIIIIIIIIII\\IIIIIIIIIIIIIIIIII!IIII\\I
90 20 30 40 50 60 70 80 90 100
()

“ Facebook Al Research (FAIR)
& https //arxiv.org/pdi/1604.02135.pdf

» Major challenge for HL-LHC
and future hadron colliders!

« Can leverage unsupervised

learning techniques to group
hits into tracks Y “

» Subject of TrackML challenge
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Jet classification with ML

S
++ = mass from QCD radiation
. A‘é L 3 Geves top tagger performance:
~ 70% ._.:' \ P —— ParticleNet
TreeNiN
. & T e deep
i gmmlemgen | [ AU e PFN i
H - < i 125Gev e learning
~ 60% === NSub(8)
LBN
e NSub(6)
, 2 § .. P-CNN
W/Z ~~<5 1 8091 GeV g 109 LoLa
~ 70% p [ = BN
o nsub+m
g — EFP
g === TopoDNN
b 4.2 GeV++ % <
23]
c % 1.3 GeV++ t g, q/g iy
/Zfa.:;-: VS. N
101 AN
u,d,s % 100 MeV-++
00 01 02 03 04 05 06 07 08 09 10

Signal efficiency &5
g % 0++

(1] from slides by Jessie Thaler » Deep learning approach often provides best

see also recent reviews: performance for jet classification tasks

Larkoski, Moult, Nachman, 1709.04464,
Marzani, Soyez, Spannowsky, 1901.10342




Strategy for ML event classification

object classification
& regression event categorization

NN [ (e, Ere, be, ¢e) \

NN > ( jet7 ET,ja 917 (b] )

NN b (MET Eq o, ¢e>/

QEXPERIMENT
http://atlos.ch cell 1

cell 2

EER

cellN

cell 1
cell 2

—> Prob(SUSY)
—» Prob(SM)

NN

ERR

cellN

jet, (43'Gev) | T cell 1

cell 2

ERR

cell N

« Factorize the problem: object tagging + event classification
— Use cells to classify type and measure p4'’s of physics objects (e, u, t, y, j, MET)
— Use object types and p4’s to categorize events (e.g. SM vs. SUSY) with e.g. RNNs
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State of the Art Applications of Machine
Learning for daily life




Autonomous cars

e Nevada made it legal for
autonomous cars to drive on
roads in June 2011

e As of 2013, four states (Nevada,
Florida, California, and Michigan)
have legalized autonomous cars
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Inference from Deep Learned models

B
Generating posterior samples from faces by “filling in” experiments

(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Input images
Samples from

feedforward '
Inference 3

(control)

‘ —/ G
‘t
Samples from
Full posterior
inference
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Machine Learning in Automatic Speech Recognition
.

A Typical Speech Recognition System

Transducer
Neural &

Language
Model

. NoA aie moy ‘IH

Deep learning has state-of-the-art results

#Hideniayers | 1 | 2 [ 4 |8 |10 12

Word Error Rate % 16.0 128 114 109 11.0 111

Baseline GMM performance = 15.4%

, : [Zeiler et al. “On rectified linear units for
[ahinf ah Jan] er [inpik] s [ct b eh Jan speech recognition” ICASSP 2013]
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Conclusions

« Machine learning are part of our daily life and evolve rapidly for
mutiple purposes and different complex problems.

« Wide variety of machine learning techniques available for collider
classification, regression, and fast simulation tasks

« Feature-based classifiers widely used in LHC experiments and under
study for future colliders

 Deep learning approach with low-level inputs has been shown to
provide better performance for some problems

« Many different applications available on the market

Enjoy the benefit of ML in your daily life
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