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The predictive accuracy of the Navier–Stokes equations is known to degrade at the limits
of the continuum assumption, thereby necessitating expensive and approximate solutions to
the Boltzmann equation. While tractable in one spatial dimension, their high dimensionality
increases the computational challenge of multi-dimensional, multi-physical Boltzmann calcu-
lations. It is therefore desirable to augment the Navier–Stokes equations for accuracy under
these conditions. We present an application of a deep learning method to extend the validity of
the Navier–Stokes equations to transition-continuum flows. The technique encodes the missing
physics via a neural network, which is trained to reduce the error between the Navier–Stokes and
Boltzmann solutions. While standard DL methods can be considered ad hoc due to the absence
of underlying physical laws, at least in the sense that the systems are not governed by known
partial differential equations, the DL framework leverages the a priori known Boltzmann physics
while ensuring that the trained model is consistent with the Navier–Stokes equations. The online
training procedure solves adjoint equations, constructed using algorithmic differentiation, which
efficiently provide the gradient of the loss function with respect to the learnable parameters.
The model is trained and applied to predict stationary, one-dimensional shock thickness in
low-pressure argon.

I. Nomenclature

U = dependent variables
û = adjoint variables
𝜃 = model parameters
𝑓 (U𝑥 , 𝜃) = neural network closure model

II. Introduction

Computationally efficient and accurate models for flows in translational nonequilibrium are essential for designing,
operating, and developing hypersonic flight vehicles and their advanced propulsion systems. The Knudsen number

(Kn = 𝜆/𝐿, where 𝜆 is the molecular mean free path and 𝐿 is a characteristic length scale) indicates the flow regime,
spanning continuum to free-molecule flow. Increasing Kn indicates an increasing departure from local thermodynamic
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equilibrium, which affects the applicability of various flow models [1]. For Kn ≤ 10−3, the continuum Navier–Stokes
equations are an appropriate fluid model. However, existing computationally efficient hydrodynamic models, perturbative
in nature [1], become unreliable as Kn rises due to either low densities or regions of high local gradients (as in hypersonic
flows), which cause deviations from the linear Newtonian and Fourier laws. The high-Knudsen-number regime can be
further divided into the transition-continuum regime (0.01 ≤ Kn ≤ 1) and the free-molecule flow regime (Kn ≥ 1).

From a theoretical standpoint, the kinetic description of interacting particles via the solution of the Boltzmann
equation allows for the most accurate description of nonequilibrium hypersonic flows. Because of the difficulties
associated with the solution of the Boltzmann equation, approximate physics-based methods—at different spatial and
time scales—have been developed over the years by the scientific community. This section aims to provide a brief
overview and a critical analysis of the approaches currently used in the literature to alleviate the computational challenges
of solving the Boltzmann equation.

These methods can be classified into two broad categories: Direct Simulation Monte Carlo (DSMC) and extended-
hydrodynamics methods. DSMC involves the simulation of collisions between many “computational molecules” that
statistically describe the physical dynamics and interactions among fluid molecules [2, 3]. While popular, DSMC
remains challenging for mixed transition-continuum and continuum flows, though modern DSMC can solve complicated,
multiphysical flows given sufficient computing power [4, 5]. The computational cost of DSMC can be alleviated by
extended-hydrodynamics methods, which use the fluid equations in conjunction with higher-order constitutive models
for the viscous stress and heat flux terms to extend their validity beyond the continuum regime. Many of these methods
use the Chapman–Enskog expansion, which uses Kn-series approximations (of varying order) to the Boltzmann equation.
Retaining the zero-order terms gives the Euler equations, first-order terms the Navier–Stokes equations, and second-order
terms the Burnett equations [6]. The Navier–Stokes equations are valid in the continuum limit (Kn → 0) of small
mean free paths [6, 7]. However, large perturbations of the velocity distribution from equilibrium render the continuum
assumption invalid. Nonperturbative moment methods [8] mitigate the problem of the breakdown away from moderate
nonequilibrium by predicting values for momentum and energy fluxes that are consistent with the nonnegativity of
the particle density. These methods, however, are storage-intensive and computationally impractical due to the large
number of independent variables required to evaluate integral terms. Several variants of the Burnett equations have
been proposed including the BGK–Burnett (Bhatnagar–Gross–Krook) equations [9], Woods equations [10], Grad’s
13-moment equations [11, 12], regularized Burnett [13], and regularized Grad’s 13-moment equations [14]. A major
drawback of most is their mathematical ill-posedness in their original formulations, which leads to physical and
numerical instabilities. Thermodynamic consistency is also not an intrinsic property of these equations; this limits
their general applicability, despite their computational cost being comparable to the Navier–Stokes equations. The
advantages of DSMC’s detailed kinetic information and the continuum-like methods’ computational tractability can
be obtained by hybrid schemes [15–24], which solve the Navier–Stokes equations in continuum regions of the flow
and employ the DSMC technique elsewhere. Although these methods are attractive for multiscale flows, identifying
the continuum and DSMC (molecular) regions is often done from the continuum perspective, numerically interfacing
these regions is challenging, and the speedup obtained is often insufficient to render it an attractive alternative to pure
DSMC. Deterministic numerical methods that directly solve the Boltzmann equation [25] have been tested for simple
flow configurations, though their extension to practical problems is yet to be explored.

This paper describes the construction of a physics-based reduced-order model, able to capture the fundamental
physical processes that occur in hypersonic flows, yet computationally efficient, by leveraging fundamental physics,
computational science, and applied mathematics. The proposed model compensates for the deficiencies of the
Navier–Stokes model in the transition-continuum regime by introducing additional terms into the continuum equations.
By estimating the parameters of these terms (we use neural networks) while converging the Navier–Stokes solutions to
Boltzmann solutions, the model attempts to encode the unrepresented physics that are missing from the continuum
description of the gas. We also propose algebraic constraints to the model outputs to ensure consistency with the second
law of thermodynamics.

Applications of deep learning (DL) for closure modeling are widespread in incompressible fluid mechanics [26–30]
but are much less common for compressible flows and hypersonics. Most previously employed machine learning
methods for flows attempt to estimate unclosed terms (e.g., the Reynolds stress or the subgrid stress) by minimizing the
direct mismatch between these terms and “trusted” data, which are often obtained from highly resolved direct numerical
simulations (DNS) [31–33]. This approach, which we call a priori training, decouples the parameter estimation
(optimization) step from the solution of the governing partial differential equations (PDEs), which is mathematically
inconsistent due to the noncommutativity of nonlinear operations [34]. In our view, this approach has two primary
deficiencies for compressible flows. First, the nonlinear coupling of dependent variables inherent to compressible flows
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intensifies the inconsistency of a priori training. Second, and more importantly, when the discrepancy is due to a
fundamental deficiency in the PDE model—for example, for transition-continuum flows, approximations to the viscous
stress and heat flux from kinetic theory—the functional form of the discrepancy is often unknown; thus, even defining
the loss function for the direct mismatch is challenging.

Our deep learning approach is conceptually simple yet avoids these challenges. Rather than decouple the optimization
step from the PDE solution, we use an embedded optimization method that substitutes the untrained model into the
PDE and estimates its parameters in situ [28, 34, 35]. The model thus respects its effects on the nonlinearly coupled
PDE solution. Additionally, this approach can directly compute the loss function from the dependent variables (mass,
momentum, and energy) or derived quantities (e.g., temperature) rather than from higher-order unclosed terms appearing
in the PDEs. This allows us to obtain target data from Boltzmann solutions and, in theory, enables straightforward
incorporation of experimental data. We present an embedded optimization approach that optimizes over the PDE
solution by solving the adjoint Navier–Stokes equations, which are obtained using algorithmic differentiation (AD) of the
forward equations and are solved efficiently using graphics processing unit (GPU) acceleration. Similar methods have
been successfully applied to turbulence modeling for incompressible large-eddy simulation (LES) [34, 36, 37], Reynolds-
averaged Navier–Stokes (RANS) simulation [35, 38] and sensitivity analysis of chaotic dynamical systems [39, 40].
Given the code-intrusive nature of adjoint-based optimization, many efforts to avoid this difficulty have used less-
complete couplings of the optimization step and the PDE solution [41–43], though these methods typically require
trusted data for the exact term being modeled, which is not always possible.

This work presents an example application to the prediction of the shock structure in rarefied argon flows, compares
the augmented Navier–Stokes predictions to the unmodified predictions, assesses the Mach number interpolation and
extrapolation capability of the DL model, and provides a physical interpretation of the modifications to the continuum
transport terms. The governing equations and transport models from kinetic theory are briefly reviewed in Section III.
The embedded deep learning framework and constraints to enforce the second law of thermodynamics are introduced in
Section IV. An application to transition-continuum argon shock predictions is presented in Section V. A summary and
discussion of future work are provided in Section VI.

III. Continuum Equations and Closure Models
Let 𝑔(𝑡, x, v) be the solution to the Boltzmann equation (the distribution function) for 𝑡 ∈ [0,∞) and x, v ∈ R3,

and define the mass density 𝜌(𝑡, x) = ⟨𝑚, 𝑔(𝑡, x, ·)⟩ and fluid-dynamic momentum 𝜌u(𝑡, x) = ⟨𝑚𝑔(𝑡, x, ·), v⟩, where
𝑚 is the mass of a particle, and integrals of the distribution function over the velocity space are obtained from
⟨ℎ(·), 𝑔(𝑡, x, ·)⟩ =

∫
R3 ℎ(v)𝑔(𝑡, x, v)𝑑v. In this manner, all continuum quantities of interest U = {𝜌, u, 𝑝, 𝑇, . . . } may

be obtained, where 𝑝 is the pressure, and 𝑇 is the temperature, among other possibilities.
The compressible Navier–Stokes equations for a single-component gas, as derived from the Boltzmann equation, are

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0

𝜕𝜌u
𝜕𝑡

+ ∇ ·
[
𝜌u ⊗ u − 𝜏(u, v, 𝑔)

]
= 0 (1)

𝜕𝜌𝐸

𝜕𝑡
+ ∇ ·

[
𝜌𝐸u − 𝜏(u, v, 𝑔) : u + q(u, v, 𝑔)

]
= 0,

where 𝐸 = 𝑒 + u⊤u/2 is the total energy and 𝑒 is the internal energy. The thermal momentum flux

𝜏(u, v, 𝑔) =
〈
𝑚v ⊗ v − 𝜌u ⊗ u, 𝑔(𝑡, x, ·)

〉
(2)

and the heat flux q(u, v, 𝑔) require integration over the Boltzmann phase space; thus, they are unclosed under the
continuum variables. Closure of (2) is commonly achieved by assuming proportionality to the strain-rate tensor and
defining the pressure, yielding 𝜏 = 𝜎 − 𝑝I, where 𝜎 = 𝜇(∇u + ∇u⊤) − 2

3 𝜇(∇ · u)I, 𝜇 is the viscosity, and the pressure
satisfies the ideal-gas equation of state 𝑝 = (𝛾 − 1) (𝜌𝐸 − 𝜌u⊤u/2), where 𝛾 is the (constant) ratio of specific heats.
Similarly, the heat flux is typically closed using q = −𝜆∇𝑇 , where 𝜆 is the thermal conductivity, 𝑇 = 𝑝/(𝜌𝑅), and 𝑅 is
the specific gas constant. However, these closures—and the use of the Navier–Stokes equations more generally—require
the continuum approximation to hold, which can inaccurately represent the physics of nonequilibrium flows in the
transition-continuum regime.
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A. Neural-Network Closures
We introduce three approaches for the closure of (1) using neural networks. First, the transport coefficients 𝜇 and

𝜆 may be corrected using neural networks (Approach A),

𝜇(U; 𝜃) = 𝜇0 (1 + 𝑓1 (U𝑥 ; 𝜃)),
𝜆(U; 𝜃) = 𝜆0 (1 + 𝑓2 (U𝑥 ; 𝜃)),

(3)

where 𝑓1 (U𝑥 ; 𝜃) and 𝑓2 (U𝑥 ; 𝜃) are the outputs of a neural network 𝑓 (U𝑥 ; 𝜃), which takes the point-wise derivatives of
U as its input and has parameters 𝜃. The resulting viscous stress and heat flux are

𝜎(U; 𝜃) = 𝜇(U; 𝜃)
( (

∇u + (∇u)⊤
)
− 2

3
(∇ · u)I

)
and

q(U; 𝜃) = −𝜆(U; 𝜃)∇𝑇.
(4)

Second, the continuum viscous-stress and heat-flux models may be augmented by linearly superimposing neural
networks (Approach B). This results in augmented viscous-stress and heat-flux terms,

𝜎(U; 𝜃) = 𝜇

( (
∇u + (∇u)⊤

)
− 2

3
(∇ · u)I

)
− 𝑓1 (U𝑥 ; 𝜃)

q(U; 𝜃) = −𝜆∇𝑇 − 𝑓2 (U𝑥 ; 𝜃),
(5)

where 𝑓1 (U𝑥 ; 𝜃) and 𝑓2 (U𝑥 ; 𝜃) are again neural-network outputs, though they need not be the same networks as in (3).
Finally, the continuum models 𝜎(U) and q(U) may be directly modeled using neural networks (Approach C),

𝜎(U; 𝜃) = 𝑓1 (U𝑥 ; 𝜃) and q(U; 𝜃) = 𝑓2 (U𝑥 ; 𝜃). (6)

We pursue only Approaches A and B here. These have more limited potential than Approach C, being constrained by
the algebraic models for 𝜎 and q, but are more straightforward to implement and analyze. Rather than directly model
the transport terms, our goal is to select 𝜃 such that the new models account only for deviations of the classical relations
from kinetic theory. The neural network 𝑓 (U𝑥 ; 𝜃) structure and optimization are discussed further in Section IV.

An important uncertainty in the physical modeling of the shock structure, especially at high Mach numbers, is
the temperature dependence of the transport coefficients 𝜇 and 𝜆. We use a power-law dependence of the baseline
continuum transport coefficients on temperature,

𝜇(𝑇) = 𝜇0

(
𝑇

𝑇0

)𝑠
and 𝜆(𝑇) = 𝜆0

(
𝑇

𝑇0

)𝑠
, (7)

where 𝑇0 = 273.15 K, is typically used for argon. Several previous efforts have aimed to adjust the value of 𝑠 to
reproduce experimental shock profiles [3, 44–46]. Following these, we use 𝑠 = 0.74 to match the viscosity law exponent
used in our DSMC simulations.

B. Application to 1D Shocks
We consider an application to a 1D stationary shock in argon at 𝑝∞ = 6.667 Pa and 𝑇∞ = 300 K. This is a

common shock-structure problem for extended hydrodynamics models [45–51] that has been extensively studied
experimentally [44, 52–55]. The flow has a transition-continuum Knudsen number Kn = 0.2 ∼ 0.3 within the shock,
which Navier–Stokes equations do not accurately model. A monatomic gas such as argon is generally chosen to study
the shock structure due to the lack of vibrational or rotational nonequilibrium. We assume a constant ratio of specific
heats 𝛾 = 5/3 with gas constant 𝑅 = 208.12 kJ/kg · K. The 1D stationary solution of (1) satisfies

𝜕U
𝜕𝑡

= −𝜕F𝑐

𝜕𝑥
+ 𝜕F𝑑

𝜕𝑥
= 0, (8)

where

U =


𝜌

𝜌𝑢

𝜌𝐸

 , F𝑐 =


𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝐻

 , F𝑑 =


0

𝜎(U; 𝜃)
𝜎(U; 𝜃)𝑢 − 𝑞(U; 𝜃)

 ,
4



where 𝐻 = 𝑒 + 𝑝/𝜌 + 1/2𝑢2 is the total enthalpy, and 𝜎(U; 𝜃) and 𝑞(U; 𝜃) are the 1D versions of the viscous-stress
tensor and heat-flux vector with embedded neural networks. U satisfies Dirichlet (supersonic freestream) boundary
conditions at 𝑥 = −∞ and subsonic nonreflective characteristic boundary conditions at 𝑥 = +∞ [56].

The 1D equations are solved on a domain 𝐿𝑥 ∈ [−20 mm, 10 mm] with the shock positioned at 𝑥 = 0. Inviscid
shock solutions provide the initial conditions and Dirichlet boundary conditions. The equations are discretized over
𝑛𝑥 = 256 uniformly spaced mesh cells with the Euler fluxes discretized using a characteristic-based scheme [57]; all
other terms are discretized using second-order centered differences. The equations are converged to their steady-state
solution using a damped Newton method; details are provided in Section III.C

Target data are obtained from DSMC solutions of the Boltzmann equation at freestream Mach numbers 𝑀∞ =

2, 3, 5, 6, 8, 9, and 10. The DSMC simulations used a VHS collision model and were initialized using the same pre- and
post-shock conditions as the Navier–Stokes simulations. The viscosity law exponent 𝑠 = 0.74 was found to best match
experimental data [44]. For further details about the DSMC simulations, readers are directed to [58, 59]. We denote the
target data as 𝜌, 𝑢 and 𝑇 .

C. Damped Newton Method
Fully converging the forward solution is necessary to ensure well-posedness of the embedded optimization problem.

This is achieved using a damped Newton method, which is able to converge the solution to near machine precision (using
64-bit floating-point precision). By comparison, pseudo-time-stepping methods require taking prohibitively many steps
to achieve comparable convergence. For the present shock cases with moderately high Mach numbers (e.g., 𝑀 = 5)
converging the relative loss to 𝑂 (10−2) requires approximately 1200 pseudo-time iterations but only approximately 20
damped Newton iterations. Even with the higher cost of the Newton solver, the lower number of iterations reduces the
training time by approximately a factor of ten.

Consider the steady solution of (8), 𝜕 (F𝑑 − F𝑐)/𝜕𝑥 = 𝜕F𝑥/𝜕𝑥 = 0. The 𝑛th Newton iteration solves ΔU from the
linearized system

𝑑F𝑥

𝑑U

����𝑛ΔU = −F𝑥 (U𝑛) (9)

and advances the solution as U𝑛+1 = U𝑛 + ΔU until ΔU falls below a specified tolerance. Given the low dimensionality
of the 1D problem, we solve (9) using Gauss–Jordan elimination, though 2D and 3D problems would require more
sophisticated sparse or iterative solution methods. Since the embedded optimization procedure currently uses the
Jacobian 𝜕F𝑥/𝜕U, the Jacobian can be reused for the Newton solver, though both could be posed in a Jacobian-free
manner.

A practical difficulty with Newton iteration is the lack of physical constraints on ΔU. Large values of ΔU obtained
by solving (9) can result in nonphysical values of U (e.g., negative density or pressure). We avoid these problems by
bracketing ΔU such that it does not exceed a specified fraction of the local solution. The bracketing operation is

ΔU𝑏 = min
(
𝑓𝑏∥U∞∥2 ×

ΔU
∥ΔU∥2

, ΔU
)
, (10)

where 𝑓𝑏 = 0.1 is the bracketing factor, ∥U∞∥2 is the 𝐿2 norm of the freestream U, and ΔU/∥ΔU∥2 is the unit vector in
the direction of ΔU. To further ensure physical solutions, ΔU𝑏 is recursively damped, ΔU𝑑 = 𝑓𝑑ΔU𝑏, where 𝑓𝑑 = 0.2
is a damping factor, until U𝑛+1 is physically consistent (e.g., the density and pressure are positive). The solution is then
advanced as

U𝑛+1 = U𝑛 + ΔU𝑛
𝑑 . (11)

Using the Newton method along with bracketing and damping stabilizes the solution before taking an optimization step
to update the neural network parameters.

IV. Machine Learning Closure
This section is organized as follows: IV.A outlines the architecture of the embedded neural network and its inputs,

IV.B details the standard a priori optimization approach and the adjoint-based optimization approach used in this paper,
and IV.C presents a brief derivation of the entropy constraints introduced to enforce the second law of thermodynamics.
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A. Model Architecture
The inputs to the embedded neural network are the first-order spatial derivatives of the computed scalar flow

quantities and velocity at a mesh point 𝑥𝑖: 𝑧𝑖 = {𝜌𝑥 (𝑥𝑖), 𝑝𝑥 (𝑥𝑖), 𝑇𝑥 (𝑥𝑖), 𝑢𝑥 (𝑥𝑖)}. These inputs are invariant to Galilean
transformations (constant relative motion), being spatial derivatives of scalar and vector quantities, which also guarantees
that the network output quantities are invariant to Galilean transformations [31, 60]. We do not consider rotational
invariance, which is a separate issue that has been assessed elsewhere [31]. The model inputs are expanded to include
data at the two neighboring mesh points: 𝑧𝑖 = {𝑧𝑖−1, 𝑧𝑖 , 𝑧𝑖+1}. This expanded set of inputs serves to enable the model to
compute higher derivatives, though it introduces a degree of mesh dependence, which could reduce generalizability to
out-of-sample meshes. Addressing the issues of rotational invariance and mesh dependence is the subject of ongoing
applications to two- and three-dimensional flows.

The neural network has a four-layer structure with one gate layer. For inputs 𝑧 ∈ R18×𝑛𝑥 , the model architecture is

𝐻1 = 𝜎1 (𝑊1𝑧 + 𝑏1)
𝐻2 = 𝜎1 (𝑊2𝐻1 + 𝑏2)
𝐻3 = 𝐺 ⊙ 𝐻2 with 𝐺 = 𝜎2 (𝑊3𝑧 + 𝑏3)

𝑓 (𝑧; 𝜃) = 𝑊4𝐻3 + 𝑏4

with output dimensions 𝑓 (𝑧; 𝜃) ∈ R2×𝑛𝑥 . In these,

𝜎1 (𝑥) =
{

𝛼(exp(𝑥) − 1), 𝑥 ≤ 0
𝑥, 𝑥 > 0

is the exponential linear unit (ELU) activation function with hyperparameter 𝛼 = 1, 𝜎2 (𝑥) = 1/(1 + 𝑒−𝑥) is the sigmoid
activation function, ⊙ signifies element-wise multiplication, and the parameters are 𝜃 = {𝑊1,𝑊2,𝑊3,𝑊4, 𝑏1, 𝑏2, 𝑏3, 𝑏4}.
We use 𝑁𝐻 = 1200 hidden units per layer, which balances training accuracy and computational efficiency.

For Approach B (augmented continuum viscous-stress and heat-flux models; (5)), the output layer is chosen to
enforce the entropy conditions introduced in Section IV.C. For Approach A (corrected transport coefficients; (3)), the
raw neural network outputs 𝑓 (𝑧; 𝜃) are passed through a final ELU layer,

𝑓 (𝑧; 𝜃) = 𝜎1 ( 𝑓 (𝑧; 𝜃)) + 0.1,

which is a simpler constraint to ensure positivity of 𝜇0 (1 + 𝑓1 (𝑧; 𝜃)) and 𝜆0 (1 + 𝑓2 (𝑧; 𝜃)) for all 𝑧 and 𝜃.

B. Online Optimization Approach
Optimization of standard a priori DL closures is constrained to use objective (loss) functions that are explicit

functions of the neural network. For example, if one wished to model the viscosity 𝜇 with a neural network 𝑓 (𝑧; 𝜃),
then it would be sufficient to minimize the objective function

𝐽 (𝜃) = 1
2

∫ ∞

−∞

(
𝑓 (𝑧(𝑥); 𝜃) − 𝜇𝑒

)2
𝑑𝑥, (12)

where 𝜇𝑒 is trusted data (usually obtained from DNS), and 𝑧(𝑥) are the input variables. To select 𝜃 using gradient-descent
optimization, one needs to compute the gradient

∇𝜃 𝐽 =

∫ ∞

−∞

(
𝑓 (𝑧; 𝜃) − 𝜇𝑒

)
∇𝜃 𝑓 (𝑧(𝑥); 𝜃) 𝑑𝑥,

where ∇𝜃 𝑓 (𝑧(𝑥); 𝜃) may be evaluated using AD over the neural network, which is standard functionality in DL
software libraries. However, optimization using (12) is problematic when data for the exact closure term (𝜇𝑒) are not
available—for example, when using experimental or higher-order simulation data (e.g., DSMC)—or when the target
quantity is not known or accurately estimable from the available data. Furthermore, this optimization takes place offline,
without solving the governing PDEs, so at best is only indirectly PDE-constrained by the target data.

The embedded DL approach addresses these shortcomings by introducing an online optimization algorithm [38, 61],
which enables arbitrarily defined objective functions. For the application to nonequilibrium flows, we construct an
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+
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θ
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∇θJ(u(θ))
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Fig. 1 Two methods to optimize a NN closure 𝑓 (u; 𝜃) in a PDE model to represent unclosed physics. A priori
optimization selects the model parameters 𝜃 offline (without solving the PDE model). Embedded optimization
instead minimizes the error with respect to the PDE solution U (or derived quantities u) by solving adjoint PDEs,
which enables efficient computation of the gradient ∇𝜃 𝐽 (u(𝜃)).

objective function using the mismatch between the computed primitive variables u𝑝 = [𝜌, 𝑢, 𝑇]⊤ and target data
obtained from DSMC solutions of the distribution function. Using an objective function constructed of primitive
variables u𝑝 rather that conserved variables U resulted in better convergence and lower losses. In general, the target data
may be known from DNS, experiments, and/or higher-order simulations. The loss function in terms of the primitive
variables is

𝐽 (u𝑝 (𝜃)) =
1
2

∫ ∞

−∞

[
1
𝜌2
∞

(𝜌(𝑡, 𝑥; 𝜃) − 𝜌)2 + 1
𝑢2
∞

(𝑢(𝑡, 𝑥; 𝜃) − 𝑢)2 + 1
𝑇2
∞

(
𝑇 (𝑡, 𝑥; 𝜃) − 𝑇

)2
]
𝑑𝑥, (13)

where 𝜌∞, 𝑢∞, and 𝑇∞ are the reference freestream values used for normalization, and where we emphasize the
dependence of the flow quantities on 𝜃. The objective function depends on 𝜃 implicitly through u𝑝 .

Figure 1 illustrates the conceptual differences between a priori and embedded optimization. Notably, a priori
optimization requires high-fidelity (e.g., DNS) target data for the closure term, which may not be available or accurately
known. (This would be the case, for example, for DNS solutions of the Navier–Stokes equations in the transition-
continuum regime.) A priori optimization cannot target the flow variables (or derived quantities), thus it cannot
straightforwardly incorporate experimental and/or higher-order simulation data. In the same vein, the embedded
optimization approach does not necessarily need DNS data.

We now consider the optimization of the discretized versions of (8) and (13); all variables in the remainder of
this section will therefore be finite-dimensional. This optimization problem is challenging, for it requires computing
the gradients of dependent variables and derived quantities with respect to the neural network parameters 𝜃. A naïve
approach would attempt to evaluate

∇𝜃 𝐽 =
𝜕𝜌

𝜕𝜃

⊤ 𝜕𝐽

𝜕𝜌
+ 𝜕𝑢

𝜕𝜃

⊤ 𝜕𝐽

𝜕𝑢
+ 𝜕𝑇

𝜕𝜃

⊤ 𝜕𝐽

𝜕𝑇
=

𝜕u𝑝

𝜕𝜃

⊤
𝜕𝐽

𝜕u𝑝

(14)

on the discrete computational mesh. The partial derivatives 𝜕u𝑝/𝜕𝜃 ∈ R3𝑛𝑥×𝑛𝜃 could be evaluated by deriving and
solving PDEs for each 𝜕u/𝜕𝜃𝑖 , where 𝑖 = 1, . . . , 𝑛𝜃 , or by introducing finite-difference perturbations 𝜃𝑖 + 𝜃′

𝑖
. However,

the number of neural network parameters 𝑛𝜃 is often large (e.g., ∼ 105 parameters), such that both of these approaches
would require an intractable number of calculations.

Instead, for 𝑛 forward equations, 𝑛 adjoint equations may be solved to provide the necessary gradients. Thus the
overall cost will not be significantly higher for optimization than for prediction. To derive the adjoint equations for a
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steady problem, note that

∇𝜃F𝑥 =
𝜕F𝑥

𝜕u𝑝

𝜕u𝑝

𝜕𝜃
+ 𝜕F𝑥

𝜕𝜃
= 0, (15)

where F𝑥 is the discrete representation of the right-hand side (RHS) 𝜕
𝜕𝑥

(F𝑑 − F𝑐).
Let us now introduce the adjoint variables û = [ �̂�, �̂�, 𝑇]⊤, which satisfy the adjoint equation

𝜕𝐽

𝜕u𝑝

+ 𝜕F𝑥

𝜕u𝑝

⊤
û = 0, (16)

with Dirichlet boundary conditions ( �̂�, �̂�, 𝑇) = 0 at 𝑥 = ±∞. Multiplying (15) by û⊤ produces

0 = û⊤ 𝜕F𝑥

𝜕u𝑝

𝜕u𝑝

𝜕𝜃
+ û⊤ 𝜕F𝑥

𝜕𝜃
. (17)

From (16), we have that û⊤ 𝜕F𝑥

𝜕u𝑝
= − 𝜕𝐽

𝜕u𝑝

⊤ which, when substituted into (17), yields

𝜕𝐽

𝜕u𝑝

⊤ 𝜕u𝑝

𝜕𝜃
= û⊤ 𝜕F𝑥

𝜕𝜃
. (18)

The relationship (18) combined with (14) provides a formula for the gradient in terms of the adjoint solution:

∇𝜃 𝐽 =
𝜕F𝑥

𝜕𝜃

⊤
û. (19)

Therefore, we can solve the adjoint equation (16) for û and use its solution to evaluate the gradient of the loss function
with respect to the model parameters (∇𝜃 𝐽) using (19). The dimension of (16) is equal to the dimension of the forward
equations (8), so the overall optimization is not significantly greater than the cost of solving the forward equations. It is
important to note that the validity of (19) is contingent on the right-hand side of (15) being zero. In turn, this requires
that the discrete residual of the forward equations is close to zero before taking an optimization step.

The discrete adjoint equations are solved as a linear system. This requires the computation of the Jacobian 𝜕F𝑥/𝜕u𝑝 ,
which is calculated using algorithmic differentiation as provided by the PyTorch library [62]. After converging the
forward and adjoint equations, gradient-descent steps are taken for parameters 𝜃 (𝑘 ) according to

𝜃 (𝑘+1) = 𝜃 (𝑘 ) − 𝛼 (𝑘 )∇𝜃 𝐽 (𝜃 (𝑘 ) ), (20)

where 𝛼 (𝑘 ) is the learning rate at the iteration 𝑘 ∈ {0, 1, . . . , 𝑁iter}, where 𝑁iter is the maximum number of optimization
iterations. The learning-rate schedule and other model-training hyperparameters are described in Section IV.D.

C. Entropy Constraints
Using DL closures unconstrained for the second law of thermodynamics can result in unphysical flow quantities.

We constrain the outputs of the neural networks to satisfy the second law of thermodynamics using the Clausius–Duhem
inequality [63],

¤I = − 1
𝑇2 q(U; 𝜃)∇𝑇 + 1

𝑇
𝜎(U; 𝜃) : ∇u𝑇 ≥ 0, (21)

where ¤I is the rate of irreversible entropy production. A “strong” form of the entropy constraint would impose conditions
on the model outputs such that (21) is nonnegative. For Approach A (transport-coefficient corrections), ensuring the
positivity of 𝜇(U; 𝜃) and 𝜆(U; 𝜃) is sufficient; this is done using an ELU output layer as described in Section IV. A
“weak” constraint for the entropy inequality would incorporate ¤I as a penalty term in the training loss function (13). The
application of strong and weak constraints for Approach B (transport-term augmentation) is now discussed separately.

1. Strong Entropy Constraint
The Clausius–Duhem inequality (21) can be rearranged to give

1
𝑇
𝜎(U; 𝜃) : ∇u𝑇 ≥ − 1

𝑇2 q(U; 𝜃)∇𝑇, (22)
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from which a constraint on the viscous stress may be obtained:

𝜎(U; 𝜃) ≥
1
𝑇

q(U; 𝜃)∇𝑇
∇u𝑇

. (23)

A constrained viscous-stress model is therefore

�̃�(U; 𝜃) = max(𝜎(U; 𝜃),N), (24)

where

N =

1
𝑇

q(U; 𝜃)∇𝑇
∇u𝑇

, (25)

and the max() function in (24) is applied in a pointwise manner. After applying (24), the constrained closure terms q(𝜃)
and �̃�(𝜃) are substituted into the governing equations. This enforcement of the strong entropy condition makes no
assumptions about the signs of ∇𝑇 and ∇𝑢.

For 1D flows, the Approach B closures (5) can be simplified to

𝜎(U; 𝜃) = 4
3
𝜇
𝜕𝑢

𝜕𝑥
− 𝑓1 (U𝑥 ; 𝜃)

q(U; 𝜃) = −𝜆 𝜕𝑇
𝜕𝑥

− 𝑓2 (U𝑥 ; 𝜃),
(26)

and the Clausius-Duhem inequality (21) reduces to

¤I = − 1
𝑇2 q(U; 𝜃) 𝜕𝑇

𝜕𝑥
+ 1
𝑇
𝜎(U; 𝜃) 𝜕𝑢

𝜕𝑥
≥ 0. (27)

The term N (25) reduces to

N =

1
𝑇

q(U; 𝜃) 𝜕𝑇
𝜕𝑥

𝜕𝑢
𝜕𝑥

, (28)

and the strong entropy constraint can be enforced according to (24).

2. Weak Entropy Constraint
A weak entropy constraint would penalize the violation of the entropy inequality (21) during the constrained

optimization process by adding an extra term to the training loss function (13),

𝐽𝑠 (𝜃) = 𝑊𝑠

∫ ∞

−∞
[min(0, 𝑓1 (U𝑥 ; 𝜃)) + min(0, 𝑓2 (U𝑥 ; 𝜃))] 𝑑x, (29)

where 𝑊𝑠 is a scalar weight. The net training loss for the weak entropy constraint is thus

𝐽𝑤 (u𝑝; 𝜃) = 𝐽 (u𝑝 (𝜃)) + 𝐽𝑠 (u𝑝 (𝜃)). (30)

The requirement to simultaneously minimize both components of 𝐽𝑤 prevented weak-constraint cases from matching
the testing and training accuracy of equivalent strong-constraint cases. This could be improved by dynamic selection of
𝑊𝑠 , for example, to enforce the 𝐽𝑠 term more strongly in regions of high entropy production.

D. Model Training
A distributed training approach was implemented to perform the online adjoint optimization. For each of Approaches

A and B, models were trained for four different training regimens: three models targeted only a single freestream
Mach number (𝑀train = 2, 𝑀train = 5, and 𝑀train = 8), and one model targeted three Mach numbers simultaneously:
𝑀train = (2, 5, 8). Training this combined model utilized message-passing interface (MPI) parallelization to average the
loss-function gradients ∇𝜃 𝐽 between the component simulations before optimizing.

Table 1 provides the training/testing regimen matrix. Freestream Mach numbers 𝑀∞ = 2, 5, 8 were out-of-sample
when not included in a model’s training regimen. Freestream Mach numbers 𝑀∞ = 3, 6, 9, 10 were out-of-sample for
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Training 𝑀∞ = 2 𝑀∞ = 3 𝑀∞ = 5 𝑀∞ = 6 𝑀∞ = 8 𝑀∞ = 9 𝑀∞ = 10

𝑀train = 2 •
𝑀train = 5 •
𝑀train = 8 •

𝑀train = (2, 5, 8) • • •

Testing ◦ • ◦ • ◦ • •
Table 1 Model training and testing matrix. 𝑀∞ = 2, 5, 8 (◦) were out-of-sample when not used for training.
𝑀∞ = 3, 6, 9, 10 (•) were out-of-sample for all models.

all trained models. This testing arrangement is designed to evaluate the stability and accuracy of the trained models for
interpolation (𝑀train = (2, 5, 8) only) and extrapolation to lower and higher Mach numbers.

Initial Navier–Stokes viscous-shock solutions for each freestream Mach number listed in Table 1 were obtained
by converging from the corresponding inviscid-shock profile. Training and testing cases were initialized from the
converged Navier–Stokes solutions. For model training, the parameters of randomly-initialized neural networks were
selected using (20) with initial learning rate 𝛼 (0) = 2.5 × 10−6. To ensure convergence, the learning rate was reduced
using an adaptive schedule:

𝛼 =

{
𝛼, 𝜖rel > 𝜖𝑇

0.75𝛼, 𝜖rel ≤ 𝜖𝑇
, 𝜖𝑇 =

{
𝜖𝑇 , 𝜖rel > 𝜖𝑇

0.75𝜖𝑇 , 𝜖rel ≤ 𝜖𝑇
,

where 𝜖rel = 𝐽 (𝜃)/𝐽0 is the objective-function relative error, 𝐽0 is the initial value of the objective function (i.e., for the
initial, unmodified Navier–Stokes solution), and the starting target error is 𝜖𝑇 = 0.9. For models trained simultaneously
for 𝑀train = (2, 5, 8), the minimum 𝛼 and 𝜖𝑇 were synchronized between training cases. The training process was
stopped for change in relative error 𝜖rel less than 1 × 10−5 between successive iterations. Algorithm 1 summarizes the
training process used for all training regimens.

Algorithm 1 Training process
1: Restart U from unmodified Navier–Stokes solution
2: Randomly initialize DL network parameters 𝜃0

3: Calculate loss of unmodified solution 𝐽0
4: Set 𝜖0

rel = 1.0
5: while Δ𝜖𝑛rel ≥ 10−5 do
6: Converge solution to steady-state using damped Newton solver III.C
7: Solve adjoint equation (16) for û
8: Compute ∇𝜃 𝐽 (u𝑝 (𝜃𝑛)) using (19)
9: Update parameters 𝜃 using gradient descent (20)

10: Calculate 𝜖𝑛+1
rel

11: Compute Δ𝜖𝑛+1
rel = 𝜖𝑛+1

rel − 𝜖𝑛rel
12: end while

Table 2 shows the total number of optimization iterations and the average number of Newton iterations per
optimization iteration for all models. For all training cases, the relative tolerance of the forward Newton solver was
1 × 10−15 before proceeding to optimization. For both Approach A and Approach B, the higher Mach number cases
required more Newton iterations per optimization iteration. Approach A resulted in better training accuracy (lower 𝜖rel)
for most training cases.
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Training 𝑁
opt
iter 𝑁Newt

iter 𝜖rel

Approach A
𝑀train = 2 21 8 5.333 × 10−2

𝑀train = 5 19 20 1.774 × 10−2

𝑀train = 8 21 35 1.069 × 10−2

𝑀train = (2, 5, 8) (100, 100, 100) (9, 36, 17) (6.715 × 10−1, 9.487 × 10−2, 6.099 × 10−2)

Approach B
𝑀train = 2 46 9 2.876 × 10−2

𝑀train = 5 37 19 4.855 × 10−2

𝑀train = 8 22 41 7.334 × 10−2

𝑀train = (2, 5, 8) (100, 100, 100) (6, 22, 33) (4.264 × 10−1, 7.516 × 10−2, 5.397 × 10−2)

Table 2 Number of optimization iterations, 𝑁opt
iter, average number of Newton iterations per optimization iteration

𝑁Newt
iter , and training loss (objective-function relative error 𝜖rel) for Approaches A and B. For 𝑀train = (2, 5, 8), the

training loss is listed separately for the three target Mach numbers.

V. Results and Analysis

A. Shock Predictions
Out-of-sample results were obtained for the testing cases listed in Table 1. Without a closure model, the Navier–Stokes

equations give qualitatively incorrect predictions for all training and testing cases. Figures 2 and 3 (Approaches A and
B, respectively) show the computed density from the unmodified Navier–Stokes equations, the Navier–Stokes solutions
with the trained neural networks, and the target DSMC solutions for 𝑀∞ ∈ [2, 10]. The neural network-augmented
Navier–Stokes solutions more closely match the target data for all cases and models. As could be anticipated from the
training loss (Table 2), the DL-augmented Navier–Stokes agreement with the DSMC data is qualitatively better for
lower Mach numbers and for Mach numbers closer to each model’s training conditions. It is also noteworthy that, for
both approaches, the models trained on higher Mach numbers extrapolate better to lower Mach numbers. Similar trends
were obtained for the pressure, temperature, and velocity fields.

B. Prediction Accuracy
Figure 4 shows the relative loss-function error as a function of the testing Mach number. This represents the

integrated error of the primitive variables over the entire domain and can be interpreted as a worst-case assessment of a
model’s performance. All models trained for a single Mach number using Approach A perform better (lower 𝜖rel) than
the corresponding models using the Approach B. For Approach B, the model trained for 𝑀train = 2 is generally more
accurate at lower than higher testing Mach numbers, and the model trained for 𝑀train = 8 is generally more accurate at
higher than lower testing Mach numbers, as could be anticipated. The Approach B model trained simultaneously for
𝑀train = (2, 5, 8) is reasonably accurate across the range of testing Mach numbers, with comparable accuracy to the
in-sample Mach 2, 5, and 8 models, though its extrapolation accuracy diminishes at 𝑀∞ = 9, 10. Interestingly, the
single-case 𝑀train = 8 model reached the best in-sample local minimum and gave the lowest relative errors for lower
testing Mach numbers. This model is also reasonably accurate for higher testing Mach numbers.

The extrapolation trends of Approach A are similar to those of Approach B. The model trained for 𝑀train = 8
extrapolates well to lower Mach number cases, with comparable accuracy to the 𝑀train = 2 case. However, the model
trained simultaneously for 𝑀train = (2, 5, 8) performs poorly for this case with errors higher than all other models for
almost all Mach numbers. The model trained simultaneously for for 𝑀train = (2, 5, 8) is reasonably accurate for 𝑀∞ = 2
through 8 but has increased errors when extrapolating to the higher 𝑀∞ = 9 and 10.
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Fig. 2 Approach A: In- and out-of-sample freestream density predictions. Results are shown for the unmodified
Navier–Stokes equations, the Navier–Stokes equations with DL models for Approach A trained for 𝑀 = 2, 𝑀 = 5,
𝑀 = 8, and 𝑀 = (2, 5, 8), and the DSMC target data. The 𝑀 = 3, 𝑀 = 6, and 𝑀 = 10 cases are out-of-sample for
all trained DL models.
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Fig. 3 Approach B: In- and out-of-sample freestream density predictions. Results are shown for the unmodified
Navier–Stokes equations, the Navier–Stokes equations with DL models for Approach B trained for 𝑀 = 2, 𝑀 = 5,
𝑀 = 8, and 𝑀 = (2, 5, 8), and the DSMC target data. The 𝑀 = 3, 𝑀 = 6, and 𝑀 = 10 cases are out-of-sample for
all trained DL models.
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Fig. 4 In- and out-of-sample objective-function relative error for the four DL models trained for Approach
A (left) and Approach B (right). In-sample cases for each model are indicated by red circles. The unmodified
Navier–Stokes solution has 𝜖rel = 1.0.

C. Shock Thickness
The shock thickness is evaluated using the maximum density gradient,

𝛿 =
max(𝜌) − min(𝜌)

max(𝜕𝜌/𝜕𝑥) . (31)

Figure 5 plots the inverse shock thickness normalized by the mean free path [44],

𝜆∞ =
16
5

( 𝛾

2𝜋

) 1
2 𝜇0

𝜌∞𝑎∞
, (32)

where 𝑎∞ is the freestream speed of sound and 𝜆∞ = 1.098 mm for the temperature and pressure conditions considered
here [44]. As shown in Fig. 5, all of the DL models improve the Navier–Stokes predictions’ accuracy over the unmodified
continuum solutions, which overpredict the shock thickness for all freestream Mach numbers at this very low freestream
density. The models trained for Approach A are generally more accurate than those trained for Approach B, which is
counterintuitive, as one would expect the greater modeling flexibility of Approach B to result in higher overall accuracy,
though this is generally consistent with the 𝜖rel trends (Fig. 4). The accuracy reduction for Approach B is likely due to
inconsistencies in the Clausius–Duhem inequality when applied as a constraint for subcontinuum flows. Conversely, for
Approach A, the simple positivity constraint on 𝜇 and 𝑘 is a stricter requirement but does not necessarily require the
validity of the Chapman–Enskog expansion of the Boltzmann equation. For both Approaches A and B, the models
trained simultaneously for 𝑀train = (2, 5, 8) is reasonably accurate for shock-thickness predictions, especially at their
in-sample conditions. The Approach A model trained for 𝑀train = 8 gives the most accurate inverse shock thickness
predictions over the entire range of testing Mach numbers and is used for subsequent comparisons.

Figure 6 compares the shock-thickness predictions of the Approach A, 𝑀train = 8 model to the DSMC targets
and experimental data [44, 52–55]. The DL model follows the DSMC trends to within the experimental uncertainty.
Additionally, Fig. 6 extends the testing range below 𝑀∞ = 2, at which conditions the DL-augmented Navier–Stokes,
unmodified Navier–Stokes, DSMC, and experimental data converge.

D. Shock Profile Asymmetry
A second derived quantity, which provides a better assessment of the overall shape, is the density asymmetry quotient

𝑄𝑝 =

∫ 0
−∞ 𝜌∗ 𝑑𝑥∫ ∞

0 [1 − 𝜌∗] 𝑑𝑥
, (33)

where 𝜌∗ is the normalized density, the maximum gradient of which is centered at 𝑥 = 0. The asymmetry quotient
measures the skewness of a shock density profile relative to its midpoint; a perfectly symmetric profile has 𝑄𝑝 = 1.
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Fig. 5 Predicted inverse shock thickness from the unmodified (no-model) Navier–Stokes equations, the augmented
NS equations for the four DL models, and the DSMC target data for Approach A (left) and Approach B (right).
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(no-model) Navier–Stokes equations, the augmented NS equations for 𝑀train = (2, 5, 8) using Approach A, and
the DSMC target data.
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augmented Navier–Stokes equations with the Approach A closure trained for 𝑀train = 8, the DSMC target data,
and experimental data [44].

Testing 𝑀∞
2 3 4 5 6 7 8 9 10

𝑁
opt
iter = 100 0.026 0.071 0.117 0.148 0.156 0.199 0.199 0.205 0.250

𝑁
opt
iter = 300 0.037 0.066 0.115 0.137 0.135 0.180 0.231 0.266 0.297

Table 3 Objective-function relative error 𝜖rel for 𝑁
opt
iter = 40 and 𝑁

opt
iter = 300. Shown for the Approach A model

trained for 𝑀train = (2, 5, 8).

Figure 7 compares the computed 𝑄𝑝 using the unmodified Navier–Stokes equations, the Approach A model
trained for 𝑀train = 8, the DSMC target data, and published experimental data [44]. The experimental data shows
downstream-skewed shocks (𝑄𝑝 < 1) for freestream Mach numbers less than 2.5 and upstream-skewed shocks (𝑄𝑝 > 1)
for higher Mach numbers, while the unmodified Navier–Stokes equations predict upstream-skewed shocks for all Mach
numbers. The DSMC target profiles capture the overall experimental trends but lie between the experimental and
unmodified Navier–Stokes profiles; this is consistent with other DSMC results using the VHS model [64–67]. The DL
model leads to skewnesses reasonably close to the target DSMC profiles near the training 𝑀train = 8 condition, though
these are still qualitatively different from the experimental measurements at higher Mach numbers.

E. Training Convergence
The convergence of 𝜖rel with the number of optimization iterations is shown in Fig. 8 for the Approach A model

trained simultaneously for 𝑀train = (2, 5, 8). A model trained for 𝑁opt
iter = 100 iterations was used for the preceding tests,

as it had the lowest total 𝜖rel between the three training Mach numbers. It can be seen that, as the model was trained for
more iterations, its predictions became more accurate for the intermediate 𝑀∞ = 5 and less accurate for 𝑀∞ = 2 and 8.
The testing errors of this model for all testing Mach numbers are listed in Table 3 for 𝑁opt

iter = 100 and 𝑁
opt
iter = 300. It

is evident that the prediction error for the longer-trained model is significantly higher for Mach numbers away from
𝑀∞ = 5, while interpolation to Mach numbers close to it are marginally lower. This is possibly evidence of the model
overfitting to 𝑀∞ = 5.
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trained model at 𝑁opt
iter = 100 ( ) is used for in- and out-of-sample prediction.

F. Physical Interpretation of the Closure
Figures 9 and 10 for Approaches A and B, respectively, compare the DL closure models to the unmodified continuum

closures and the corresponding closures integrated from the DSMC data [68]. Approaches A and B modify the viscous
stress and heat flux to similar extents relative to the standard continuum models in the vicinity of the shock and are in
excellent agreement with the DSMC profiles, particularly upstream and in the vicinity of the shock. Overall, the standard
models underpredict molecular transport at these nonequilibrium conditions, especially the post-shock magnitude of
the transport terms at higher freestream Mach numbers. Near the shock, the DL closure models and DSMC profiles
have close magnitudes and are spatially more diffuse than the standard continuum models. This is consistent with the
resulting steeper shock profiles (Fig. 6).

Fig. 9, for Approach A, shows that the modified heat-flux and viscous-stress terms have the same slope away from
the shock as the DSMC terms, unlike for Approach B. This is not surprising, as Approach B augments the continuum
closures with nonlinear terms which, are functions of the (nearly zero) flow gradients away from the shock. Significantly,
the DL-predicted profiles for 𝜎 and q differ, which reflects the fact that viscosity and thermal conductivity are continuum
manifestations of different sub-continuum processes. Conversely, the temperature-dependent models have the same
functional form (7) with only slightly different coefficients. (Indeed, a common approximation for 𝜆(𝑇) is based upon
multiplying 𝜇(𝑇) by a constant Prandtl number.) This modeling choice renders the standard models unable to account
for the differing degrees of momentum and thermal diffusion at transition-continuum conditions. The Approach A
and B models have comparable maxima to the DSMC profiles, but the Approach B models generally underpredict
𝜎 and q downstream of the shock, which is consistent with their relatively inaccurate shock-thickness predictions.
Furthermore, for both Approaches A and B, the modeled 𝜏 and q are more asymmetric (upstream-skewed) than the
DSMC, particularly for high Mach numbers, which leads to asymmetry quotients 𝑄𝑝 > 1 (see Fig. 7).

Approach A (4) modifies the viscosity and thermal conductivity; it is therefore instructive to consider the form of
the model. Fig. 11 compares the Approach A closures for 𝜇(U; 𝜃) and 𝜆(U; 𝜃) (3), evaluated using the neural network
trained for 𝑀train = (2, 5, 8), to the standard, temperature-dependent models (7) for the range of in- and out-of-sample
testing Mach numbers. The differences between the two models are pronounced at higher 𝑀∞ and both models predict
significantly higher maximum values than the temperature-dependent models. It is also evident that downstream of
the shock, the DL model predicted transport coefficients almost exactly match temperature dependent models, thus it
accurately recovers continuum behavior away from the shock.

The general trends captured by the DL models could be incorporated into algebraic models similar to (7), which
would enable computationally efficient predictions on a wide range of out-of-sample Mach numbers and geometric
configurations, even with higher dimensionality than the present shock configurations. This is more probable for simpler
models, such as our Approach A, that interact only with a scalar coefficient, and so could be more portable to different
dimensionalities, flow geometries, and/or alignments of key features (e.g., shocks) with the computational mesh. The
more complicated models that introduce vector/tensor modifications, such as Approach B, are more likely to train in a
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geometry-specific manner and likely require re-training for new geometries. The development and validity of more
generally applicable models, as well as the extrapolability of trained models to different freestream thermodynamic
conditions and gas compositions, will be the subject of future work.

VI. Conclusion
This paper presents an adjoint-based deep learning augmentation method to extend the validity of the continuum

flow equations to the transition-continuum regime. Two modeling approaches are compared: Approach A modifies
only the viscosity and thermal conductivity, while Approach B directly augments the continuum diffusive fluxes with
corrective neural networks. These modeling approaches have less flexibility than outright replacement of the fluxes but
were more stable during optimization. Model training is performed by optimizing over the Navier–Stokes equations
while targeting trusted flow data from DSMC solutions of the Boltzmann equation.

An online adjoint optimization method enables this PDE-constrained optimization to be performed efficiently. The
trained models improve the accuracy of Navier–Stokes predictions in this regime and exhibit stability and extrapolability
for Mach numbers higher and lower than those used for training, with concomitant reduction of accuracy when used
far out-of-sample (although still not of lower accuracy than that of the unmodified Navier–Stokes equations). Models
trained using Approach A have marginally better accuracy compared to models trained using Approach B, and part
of Approach A’s success may be attributed to the distinctions it identifies between the different transport-coefficient
profiles and their different growth trends with respect to the upstream Mach number. This results in different profiles for
the DL-predicted viscous-stress and heat-flux closures.

Entropy constraints ensure that the learned closure models satisfy the second law of thermodynamics. The strong
entropy constraint, which poses an algebraic constraint on the output of the DL model, resulted in stable, accurate
predictions over the range of testing Mach numbers. The weak entropy constraint, which penalizes the violation of the
entropy inequality in the optimization loss function, is attractive for its flexibility but was less stable extrapolating to
higher Mach numbers. Further study of the weighting factor for the entropy violation term is necessary to realize the
full potential of the weak entropy condition.

Notably, the loss function for the online adjoint optimization can be arbitrarily defined, can include flow variables
(the PDE solution or derived quantities), and does not need to explicitly include the unclosed term(s). This is in contrast
to a priori training, which conforms the model directly to the unclosed terms. The success of the online adjoint method
with “third-party” DSMC target data (i.e., not directly obtained from the flow PDEs) is striking, though not unexpected,
given the success of adjoint-based methods for aerodynamic shape design and turbulence modeling, among others. One
hope is that this method will enable model development against experimental target data with comparable stability and
accuracy, though this remains to be tested. Alternatively, or in addition, the loss function for the flow model can target
derived or integral quantities that are functions of the flow variables, such as the shock thickness or, for wall-bounded
flows, the boundary layer thickness and drag coefficient.

Future work will focus on extending the current model to more-complex geometric scenarios (2D oblique and curved
shocks, 3D shocks) and flows with additional physical complexity (nonmonatomic gases, reacting flows). Particularly
useful for cases with additional physical complexity, the adjoint-based DL approach can account for multiple, coupled
constitutive models simultaneously, which would enable, for example, coupling the transport coefficients with the
chemical kinetics.
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