
Solving differential equations with Deep Learning: a beginner’s guide

Luis Medrano Navarro
Instituto de Nanociencia y Materiales de Aragón (INMA),

CSIC-Universidad de Zaragoza,
50009 Zaragoza, Spain

Luis Martin Moreno
Departamento de F́ısica de la Materia Condensada,

Universidad de Zaragoza, Zaragoza 50009, Spain and
Instituto de Nanociencia y Materiales de Aragón (INMA),

CSIC-Universidad de Zaragoza,
50009 Zaragoza, Spain

Sergio G. Rodrigo∗

Departamento de F́ısica Aplicada, Facultad de Ciencias,
Universidad de Zaragoza, 50009 Zaragoza, Spain and

Instituto de Nanociencia y Materiales de Aragón (INMA),
CSIC-Universidad de Zaragoza,

50009 Zaragoza, Spain

The research in Artificial Intelligence methods with potential applications in science has become
an essential task in the scientific community last years. Physics Informed Neural Networks (PINNs)
is one of this methods and represent a contemporary technique that is based on the fundamentals
of neural networks to solve differential equations. These kind of networks have the potential to
improve or complement classical numerical methods in computational physics, making them an
exciting area of study. In this paper, we introduce PINNs at an elementary level, mainly oriented
to physics education so making them suitable for educational purposes at both undergraduate and
graduate levels. PINNs can be used to create virtual simulations and educational tools that aid in
understating complex physical concepts and processes where differential equations are involved. By
combining the power of neural networks with physics principles, PINNs can provide an interactive
and engaging learning experience that can improve students’ understanding and retention of physics
concepts in higher education.

I. INTRODUCTION

Artificial Intelligence (AI) has brought about a major
shift in how we solve problems, especially those com-
puters previously struggled with or could not solve effi-
ciently. For example, classifying handwritten digits was
once a difficult task for computers, but now it can be
easily done using Neural Networks (NN).

Science follows the trail of the significant progress
made in AI last years, embracing these advancements and
introducing novel techniques that could pave the way for
future breakthroughs [1].

Historically, one of the fundamental challenges in
mathematics has been finding adequate solutions to dif-
ferential equations. They are essential to our comprehen-
sion of the natural world and are extensively employed
in numerous knowledge domains.

The initial attempts of AI using NNs for solving differ-
ential equations can be traced back to the 1990s [2]. The
method starts by choosing a trial function that satisfies
the boundary conditions of the problem strictly by def-
inition. Different problems thus require using different

∗ sergut@unizar.es

trial functions. Moreover, the method’s validity depends
on our ability to provide trial functions capable of ap-
proximating the solution, which often requires a good
dose of imagination. This presents a significant limita-
tion for the method to be generalized to complex dif-
ferential equations. More recently, new techniques have
been proposed to overcome the previously cited difficul-
ties. Among these, we highlight here the Fourier Neural
Operator Networks [3] method, Deep Operator Networks
(DeepONet) [4], and Physics-Informed Neural Networks
(PINNs). The above methods use Deep Learning (DL)
techniques to implement complex and intricate networks
in different scenarios. Fourier Neural Operator Networks
combine the expressiveness of NNs with the mathemat-
ical structure of the Fourier series. The Approxima-
tion Theorem has inspired DeepONet, which suggests us-
ing deep networks in learning continuous operators from
data. PINNs can be regarded as standard NNs, with the
novelty that the loss function incorporates both the dif-
ferential equation and the boundary/initial conditions.
PINNs are already being used to solve differential equa-
tions in many fields, such as fluids physics [5], quantum
mechanics [6], or photonics [7]. Compared to other meth-
ods, one of the advantages of PINNs is that they are rel-
atively straightforward to grasp, requiring only a basic
understanding of NNs and elementary calculus.

ar
X

iv
:2

30
7.

11
23

7v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
0

Ju
l 2

02
3

2

In this work, we provide a beginner’s guide on PINNs,
introducing their fundamentals in an accessible manner.
For this, we show how they can be applied to a few
examples of well-known Ordinary Differential Equations
(ODEs), which are representative of equations appearing
in physics. Specifically, we have selected three different
ODEs that exhibit exponential decay solutions, harmonic
oscillations or support solitary waves (solitons).

We provide also the corresponding Python codes (sup-
plied as Jupyter notebooks), which are fully described
in the Supplementary Material (SM), all located in the
following Github repository [8]. These notebooks can be
used to reproduce all the results presented in this work
and serve the reader to explore and find the solutions to
other ODEs.

II. BASICS OF NEURAL NETWORKS

Before explaining in depth how PINNs work, it is nec-
essary to understand the basics of NNs [9]. NN mimics
what we know about human neurons and brain tissue.
In a human neuron, dendrites collect the input signals,
which are then added inside the neuron, weighting them
according to their importance. If this added value ex-
ceeds a certain threshold, the neuron triggers and sends
a signal through the axon to other neurons.

In analogy, a mathematical neuron is defined as a func-
tion that takes n real values as input and maps them into
a real number through the composition of a linear trans-
formation with the action of a nonlinear function. This
is, given an input vector x⃗ = {x1, x2, ..., xn}, the neu-
ron returns a(z), where z =

∑n
i=1 ωixi − b is a weighted

sum, and a is the so-called activation function. The co-
efficients W = {ωi} and b are called weights and bias,
respectively. Schematically, the action of a neuron can
be expressed as follows:

Rn −→ R −→ R
{xn} −→ z =

∑n
i=1 ωixi − b −→ a(z)

The threshold is encoded in the linear transformation
for a mathematical neuron, that is,

∑n
i=1 ωixi > b. The

activation function is chosen to mimic the triggering re-
sponse of a real neuron. While the activation function
in the first neuron reported (called perceptrons [10]) was
chosen to be the Heaviside function (with values that
changed abruptly from 0 to 1), the activation functions
used nowadays are smooth as, in this case, the machin-
ery of differential calculus has proven extremely helpful in
the learning process. Currently, no definitive recipe tells
us which is the best activation function for a particular
problem. Still, the experience accumulated in the last
few years provides some guidelines. A smart selection of
the activation functions is one of the crucial aspects when
developing effective and efficient NNs.

A. Neural Networks

FIG. 1. Schematics of a Deep NN. Each instance x⃗ =
{x1, x2, ..., xn} of the training data enters the input layer.
These values are transformed through the neurons of the hid-
den layers by consecutive linear and nonlinear operations.
Finally, the output layer returns the predictions of the NN,
y⃗NN = (y1, ..., yk).

A basic NN typically comprises a series of layers of
interconnected neurons (see Fig. 1). Information flows
through the network from left to right. The first layer is
the input layer x⃗ followed by the so-called hidden layers.
The output layer will provide the predictions of the NN
and it will be denoted as yNN (x⃗, θ), being θ = [W k, bk]
for 0 ≤ k ≤ l, and l the number of layers. Therefore
θ represents the set of weights and biases of all hidden
layers at a particular training step and depends on the
network’s specific state during training.
The word deep in Deep Learning is used to designate

the case when there is a large number of hidden layers
in the network. Curiously by today’s standards, where
Deep NN may have tens of hidden layers, even NNs with
two hidden layers were already considered deep in the
early days of AI research in this field.
All the parameters we can manually change in a NN,

such as the number of layers, the number of neurons per
layer, the number of training epochs, etc., are called hy-
perparameters. We must constantly play with these val-
ues for our NN to work correctly. The problem is that
there are no clear rules for fine-tuning, so it has to be
done manually, possibly with heuristic rules.

B. Loss function

In standard uses of NNs, we have access to “true” data,
i.e., many instances of pairs (x⃗, y⃗true) for learning are
available. This is referred to as supervised learning in the
literature. As already explained, we expect the NN learns
a transformation between the inputs and the outputs so
the “distance” between the predictions and the actual
values will ideally reach near zero values.
This distance, between actual values and predictions

by the NN, is codified in the so-called loss function, L.

3

The loss function depends on the weights and biases of
all the neurons in the NN. There are infinite possible
choices for the loss function, but some are standard in
AI. The simplest one is to consider the Mean Squared
Error (MSE) between the network’s outputs/predictions
y⃗NN (x⃗) and the true values y⃗true(x⃗) for all training data:

MSE =
1

n

∑

i

|y⃗true(x⃗i)− y⃗NN (x⃗i)|2 (1)

, being n the number of data points used to calculate this
function.

C. The learning process

Since the weights and biases used to be initialized with
random values, the initial predictions y⃗NN are not related
to y⃗true, and the initial value of the loss function is high.
Therefore, the learning process, referred to as training,
minimizes the loss function by gradually modifying the
weights and biases. The training is usually divided into
epochs. An epoch refers to one complete iteration over all
the training data. The number of epochs is the number
of times the NN sees and learns from a training dataset.

Usually, the minimization of the loss function is based
on the gradient descent method. In each gradient descent
step, we update the values of each weight ωi and each bias
bi according to the following equations (the gradients)

ωn+1
i = wn

i − η
∂L

∂ωi
bn+1
i = bni − η

∂L

∂bi
(2)

where the parameter η is known as the learning rate. As
the gradient points towards the direction of the maximum
increase of a function, the search for a global minimum is
done by moving in the opposite direction of the gradient.

The learning rate is another hyperparameter to tune
while searching for an optimum NN model. The overall
training process is like descending a mountain to reach
its lowest point. Taking too large steps (large η) would
make it hard to find the lowest point on the valley because
when we get close and take the next step, we might miss
it and end up slightly back up the mountain. To improve
the accuracy of the NN predictions, we can reduce this
parameter at the cost of increasing the execution time of
the algorithm.

The learning process is prone to several challenges,
such as the algorithm becoming trapped in local min-
ima instead of discovering the global minimum. Selecting
an appropriate optimizer can address these and other is-
sues. There are numerous optimizers available for neural
networks. Stochastic Gradient Descent (SGD) consist in
an improved version of the gradient descent algorithm.
It updates the model parameters in small batches, ran-
domly selected from the whole training dataset. SGD
is an effective optimizer that is widely used due to its
simplicity and ease of implementation. Another optimiz-
ers include popular ones such as Adam and RMSprop

[11]. Adam is particularly good when dealing with noisy
data, and it is computationally efficient because it imple-
ments adaptive learning rates. On the other hand, RM-
Sprop adapts learning rates for each parameter based on
the average of its recent magnitudes, which allows it to
converge faster and more reliably than other methods in
some cases.

D. Backpropagation

Gradient descent allows us to minimize the loss func-
tion but does not tell us how to calculate the gradients.
We could calculate the partial derivatives numerically:

lim
∆xi→0

y(x1, ..., xi +∆xi, ..., xn)− y(x1, ..., xi, ..., xn)

∆xi
(3)

However, this process requires a vast number of opera-
tions and would make learning unbearably slow and in-
efficient.
One extremely efficient way to compute the gradient

is using Automatic Differentiation (AD). There are sev-
eral techniques available with different advantages and
disadvantages.
In the context of NN the method to calculate the gradi-

ents is Backpropagation, a form of reverse-mode AD that
uses the chain rule to compute gradients efficiently [12].
This algorithm enabled the first major AI revolution. It
is a two-step process. First, a forward pass generates a
set of activations of all neurons. Then, all the partial
derivatives necessary to update the weights and bias are
obtained using the chain rule [9]. The Backpropagation
algorithm relies on two main assumptions regarding the
loss function L. The first assumption is that the loss
function can be expressed as an average over the loss
functions for individual training examples. The second
assumption is that the loss function can be expressed as a
function of the outputs generated by the neural network.
As an example, the MSE loss function described by Eq. 1
holds all the requirements.

III. PHYSICS INFORMED NEURAL
NETWORKS

This section demonstrates that NNs comprise all the el-
ements necessary to solve a differential equation. PINNs
are regular NNs that incorporate both the differential
equation and its boundary/initial conditions within the
loss function. This way, PINNs can be applied to a broad
type of differential equations, whether ordinary or par-
tial, with one or several variables, single equations, and
even systems of equations. It should be noted that, de-
spite its name, PINNs are actually mathematical solvers
for Partial Differential Equations (PDEs) and do not in-
herently rely on any physics-specific information.
Let us start by providing a general definition of PINNs

and how they apply to solve PDEs. Typically, a PDE can

4

Loss θ
min

Γ𝑓𝑓

Γ𝑏𝑏

Neural Network

Initial condition

Equation

FIG. 2. PINN workflow for first-order ODEs. The approach involves building a basic NN, consisting of one input neuron for
x (points in the region where we search the solution) and one output neuron for yNN (x), which is obtained by performing
a forward pass through the NN. After that, we can obtain the derivative y′ = dy/dx thanks to Automatic Differentiation
(essential part of the backpropagation algorithm). Then the losses associated with the ODE and the initial condition are
computed. Finally, the optimizer updates the weights and biases. This process is repeated with multiple input points and
through many training epochs.

be expressed as follows:

D

(
x⃗, y(x⃗),

∂y

∂x1
, ...,

∂y

∂xd
,

∂2y

∂x1∂x1
, ...,

∂2y

∂x1∂xd
, ...

)
= 0

(4)
where x⃗ = (x1, ..., xd) is a d-dimensional vector defined in
a region Ω ⊂ Rd, and y(x⃗) is the solution Eq. 4, satisfying
the boundary conditions given by:

B(x⃗, y(x⃗)) = 0 x⃗ ∈ ∂Ω, (5)

where ∂Ω represents the boundary of Ω.
What enables a NN to find the solution of a given PDE

is its ability to represent all the mathematical objects
present in Eq.4: x⃗, y(x⃗) and the partial derivatives of
y(x⃗). The input layer of the network corresponds to x⃗ (d
input neurons), and the output of the last layer represents
the solution y(x⃗) (only one neuron) for the PDE. Largely,
this is due to the universality theorem of NNs[13], which
states that they can represent any function, and so it
does so with the solution of a particular PDE. But it
also depends on the capacity to find partial derivatives
of y(x⃗), through AD, the NN can provide all the partial
derivatives necessary to solve the differential equation on
each training step.

To solve the differential equation, we choose a set of
points NB at the boundary ∂Ω (denoted as ΓB) and a
set of ND points in the interior of Ω (denoted as ΓD).
The set Γ is defined by the union of these two sets, Γ =
ΓB ∪ ΓD = {x⃗0, x⃗1, ..., x⃗M}, with M = NB + ND. The
set Γ contains the points where yNN is evaluated in the
training process.

To train the PINN, we also need a loss function, which
is defined as a weighted sum of two terms:

L(θ,Γ) = ωDLD(θ,ΓD) + ωBLB(θ,ΓB). (6)

The term LD(θ,ΓD) should measure how well the PDE
is being satisfied by yNN at points in the set ΓD, while

LB(θ,ΓB) should measure how well the boundary condi-
tion is satisfied by yNN at points in the set ΓB .
One common practice that we are going to follow in

this work is to choose the following:

LD(θ,ΓD) = (7)

1

ND

∑

x⃗∈ΓD

∣∣∣∣D
(
x⃗, yNN (x⃗),

∂yNN

∂x1
, ...,

∂2yNN

∂x1∂x1
, ...

)∣∣∣∣
2

(8)

and

LB(θ,ΓB) =
1

NB

∑

x⃗∈ΓB

|B(yNN , x⃗)|2 . (9)

Finally, in Eq.6, ωD and ωB are hyperparameters that
must be tuned. These are usually set to one, as we will
do in the examples that follows.
As with other uses of NN, the loss function is mini-

mized iteratively. If its minimum value is near zero, the
solution yNN approximately fulfills the differential equa-
tion and the boundary condition at the chosen points in
Γ. The general validity of the solution can be estimated
by computing the value of the loss functions at points x⃗
not used in the training process.

IV. FIRST ORDER ORDINARY
DIFFERENTIAL EQUATIONS

In the previous section, we described the general for-
malism of PINNs. Let’s now apply it to the simpler case
of a 1st-order Ordinary Differential Equation (ODE),
which can be written in its general form as:

{
y′(x) = f(x, y)
y(x0) = y0

(10)

5

where y′(x) = dy
dx , being f(x, y) an arbitrary function

of x and y(x). The initial condition is the value of the
function y at x0.

Figure 2 shows the workflow of a PINN adapted to
1st-order ODEs. By the notation used in the preceding
section,

D(x, y, y′) = 0 → y′(x)− f(x, y) = 0 (11)

B(y0, x0) = 0 → y(x0)− y0 = 0 (12)

The ODE loss is then:

LD(θ,ΓD) =
1

ND

ND∑

i=1

[y′NN (xi, θ)− f(xi, yNN (xi, θ)]
2

(13)
The initial condition loss is written as:

LB(θ,ΓB) = |yNN (x0, θ)− y0|2 (14)

A successful training ends up with a set of optimum
weights and biases values θopt, so that LB(θopt,ΓB) ≈ 0
and LD(θopt,ΓD) ≈ 0.

The first example we describe is a well-known 1st-order
ODE, where the derivative of a function is proportional
to minus the value of the function (in what follows, we
choose the units such that both the proportionality con-
stant and y(0) are the unity):

{
y′(x) + y(x) = 0
y(0) = 1

(15)

, whose exact solution is y(x) = exp(−x).
This type of ODE equation describes, for instance, ra-

dioactive decay, how hot objects cool down, and the time
dependence of the charge on a capacitor in a resistor-
capacitor electrical circuit. But it also appears in prob-
lems beyond physics. For example, in chemistry, the rate
at which a chemical reaction occurs is often proportional
to the concentration of the reactants. In sociology, the
rate of change of a population is sometimes proportional
to the size of the population.

The main results are presented in Fig. 3 (Section 2 in
the SM includes the corresponding Python implementa-
tion and its description).

It should be noted that the results may vary across
different runs of the codes due to the statistical behav-
ior of certain parts of the algorithm. In the example of
this section, we achieved a good performance with a NN
that had just 3 hidden layers with 50 neurons each and
chose 20 points in the training interval (0 ⩽ x ⩽ 4).
We utilized the Adam optimizer with a learning rate of
0.001. The hyperparameters measuring the relative rel-
evance of ODE and initial condition losses are chosen
as ωD = ωB = 1 (see Section 2 in the SM, for further
details).

In this case, total loss values (LD + LB) around
1.0 · 10−4 provided correct NN predictions. A total of
100 simulations were conducted setting this total loss as

a threshold. The result is that, on average, it takes ap-
proximately 42 epochs to achieve this threshold. The
standard deviation is also very low (9 epochs).

The total loss as a function of the epochs is shown
(logarithmic scale) in Fig. 3(a) with the magenta line,
for one of the simulations conducted. Overall, the total
loss decreases with the number of epochs. In the same
panel, the MSE is measuring the distance between the
exact analytical solution and the calculated by the PINN
(see Eq. 1). This metric is used to estimate the accuracy
of the predicted solution, and it has not been used in the
training process (PINNs make not use of external data to
work), as it requires knowledge of the analytical solution
beforehand.

Both metrics in Fig. 3(a) become negligible after only
40 epochs of training. This indicates that the PINN pro-
vides a good approximation for the solution of the ODE
on the training points, which is confirmed in Fig. 3(b),
where the solid line corresponds with the exact solution,
while circular symbols provide the values of y(x) pre-
dicted by PINN.

Although the NN may make accurate predictions for
the training points, this does not necessarily imply that
it will generalize well to new, unseen data points. A
crucial consideration is thus the ability of the PINN to
interpolate and extrapolate results accurately. We use a
validation set, with many points chosen within and out-
side the training interval. The results are summarized
in Fig. 3(c). The highlighted region marks the training
interval. We see how the predictions of the NN (dashed
red line) nicely interpolate within the training interval
at points not seen by the NN during training. However
the PINN is less reliable for extrapolation; the predic-
tion deteriorates quickly away from the interval used in
training.

To better understand how the PINN generalizes, we
can take a look at the predictions of y(x), y′(x), y′′(x)
and the ODE loss (LD) within the validation interval.
These quantities are shown in Figure 3(c). The ODE
loss vanishes when the NN prediction is correct, indicat-
ing an excellent approximation of the solution. This is
the only possible indicator of the quality of the solution
outside the training points in case the analytic or nu-
merical solution is unknown. From a pedagogical point
of view is interesting to observe how the NN is able to
obtain the correct derivatives of the function. The first
derivative looks pretty good inside the training interval.
However, y′′(x) does not exactly coincides what it would
be expected within the range 0 < x < 1, although it
is within the training interval. This could be the cause
of the deterioration observed for predictions outside the
training interval.

PINNs offer several benefits compared to traditional
numerical methods (e.g., finite element methods). One
of the most significant advantages is that they eliminate
the need to create a mesh for the entire domain of the dif-
ferential equation, which is a common challenge in clas-
sical algorithms. In our example, only a few points were

6

(a)

(b)

(d)

(e)

(f) (i)

(h)

(c)

(g)

FIG. 3. Three representative physical examples described by ODEs are studied using PINNs. Panels [a-c] present the analysis
of a 1st-order ODE, corresponding to the exponential decay solution (Eq. 15); [d-f] shows the study of the harmonic oscillator as
a representative example of a 2nd-order ODE (Eq. 16); and [g-i] is devoted to the Korteweg-de Vries 2nd-order nonlinear ODE,
whose solution is a soliton (Eq. 17). The first row displays the training evolution as a function of the number of epochs. Two
indicators of the performance of the NN are plotted: the total loss (LD + LB) and the MSE. The last measures the distance
per point between yanalytic and yNN , evaluated at the training points. The second row compares the analytical solutions (solid
lines) and those predicted by the PINNs at the training coordinates (dots). The third row displays the analytical solutions and
the predictions for y(x) and its derivatives as a function of x. The results of this row were obtained from previously unseen
points inside and outside the training interval (shadowed regions), which were utilized as validation data for the PINN. The
ODE loss (LD) is also included (solid gray line) as a reference.

necessary for a correct solution.

V. SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS

The description of physical systems frequently relies
on 2nd-order ODE, like in many models of Newton’s me-
chanics.

In this section, as an example, we will find the solutions
for the harmonic oscillator using PINNs. Examples of
physical systems described by a harmonic oscillator are
a mass attached to a spring, a pendulum consisting of a
mass hanging from a string swinging back and forth with
small amplitude, and an electrical circuit composed of an
inductance and a capacitance in series. To simplify the
description, we will use units and initial conditions such

that the ODE is described as:
{

y′′(x) + y(x) = 0
y(0) = 1, y′(0) = 0

(16)

,whose analytic solution is y(x) = cos(x). The reader
will have noticed that we do not use the usual notation
for the harmonic oscillator solution, which usually de-
scribes de dependence of some quantity with time t. To
maintain standard AI terminology and consistent nota-
tion throughout the paper, we denote that quantity as y
and “time” t with x.
We solve Eq.16 using the PINN machinery described

before (the interested reader can find in Section 3 of the
SM the Python implementation). After slightly tuning
the hyperparameters, we get total losses and MSE values
as small as the ones for 1st-order ODE studied in the
previous section (Fig. 3(d)), for an example of this PINN
evolution. As in the previous case, we imposed a total
loss threshold (1.0 · 10−4) that produces pretty exact NN

7

predictions with this PINN. Across 100 simulations, the
NN reached this threshold after an average of 326 epochs
of training, with a standard deviation of 36 epochs.

We can observe, however, a distinct behavior, the ap-
pearance of strong oscillations. This can be due to the
stochastic behavior of the optimizer along the training
process so that the model can be trapped momentarily
in a local minimum of the loss function. If the loss does
not improve after several epochs, the Adam optimizer
can change the learning rate, which may be the most
likely cause of these jumps in the loss. To minimize the
effect of these fluctuations, during the training process,
we keep saving the best model.

Figure 3(e) displays the predictions of the PINN within
the training interval of 0 ⩽ x ⩽ 8. Like the 1st-order
ODE analysis, the minimal total losses and MSE indicate
an excellent agreement between the analytical solution
and yNN .

On the other hand, Figure 3(f) summarizes the robust-
ness of the PINN predictions within the training inter-
val, with limited performance beyond it. When applied
to validation points, the PINN provides perfect interpo-
lation. Additionally, the PINN solution remains valid
slightly outside the training region. As anticipated, the
ODE loss within the training interval is nearly negligible.

Figure. 3(f) also provides an excellent visualization of
how the PINN predictions fulfill the mathematical rela-
tions between the y(x) = cos(x) function and its first two
derivatives.

VI. SECOND ORDER NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS

We present in the last section the case study of a non-
linear ODE (refer to Section 4 in the SM for the Python
implementation). Nonlinear physics explain many physi-
cal phenomena beyond linear PDEs’ scope. For instance,
under intense laser excitation, certain materials display
nonlinear optical responses, resulting in the appearance
of colors that were not initially present in the excitation
beam. Solitons are another example of the effects caused
by the nonlinearities in materials. These waves can keep
their shape and velocity, even in media where completely
distorted waves would be expected in the absence of non-
linear effects.

One nonlinear ODE that appears in several physi-
cal situations is the Korteweg-de Vries (KdV) equation,
which can model solitons in ocean waves, fiber optics
modes, and Bose-Einstein condensates in quantum me-
chanics.

The general solution of the KdV equation has com-
plex dependencies between time and space. Still, it can
be constrained to maintain its shape. Mathematically,
ϕ(X, t) = y(X−vt) = y(x), where v is the solution speed.
With this constrain, the following 2nd-order ODE math-

ematically describes a soliton in the KdV model:

{
y′′(x)− y(x)− 3y2(x) = 0

y(0) = −1/2, y′(0) = 0
(17)

Another advantage of using the KdV equation as an
example is that its analytical solution is known: y(x) =
− 1

2 · sech2(x2). By changing the variable x → X − t, the
equation describes a soliton that moves to the right with
a velocity of one (in the chosen set of units).
We analyze the total loss and MSE in Fig. 3(g). The

complexity of this equation, and probably the presence
of the nonlinear term (y2(x)), made it necessary to re-
duce the learning rate to 0.0001, i.e., by a factor of 10,
as compared with the previous ODEs. Correspondingly,
the number of epochs had to be increased to ensure the
loss reached a sufficiently small value. Similar to the pre-
vious PINNs experiments, we conducted 100 simulations
while enforcing a total loss threshold of 1.0 · 10−5. This
value was determined empirically and has been observed
to yield reliable NN predictions. On average, it takes
approximately 1422 epochs to achieve this loss thresh-
old, with a standard deviation of 623 epochs. It is worth
noting that the distribution in this case is non-normal
(see Section 5 in the SM) and a more insightful analy-
sis requires the use of median and mode statistics, where
the median represents the middle value of the dataset
and the mode represents the most common value. In
the 2nd-order nonlinear ODE case the median and mode
were 1256 and 1225, respectively. This last explains why
only 12% of the simulations required 2000 epochs or more
to converge to the chosen threshold.
The main result, that is, the solution of the soliton,

is achieved in the interval −5 ⩽ x ⩽ 5 (Fig. 3(h)) using
only 10 training points. Then, again, the predicted so-
lution, its derivatives, and the ODE loss are calculated
and shown in Fig. 3(i). It is interesting to note how this
PINN is able to find a exact solution with so sparse mesh
of 10 points.

VII. CONCLUSION

We have presented an introductory guide to PINNs, a
recently proposed method to solve differential equations
with AI. From a pedagogical point of view, by combining
the power of NN with the knowledge encoded in differ-
ential equations, PINNs offer a promising approach to
teaching physics. By using PINNs, students can explore
and experiment with virtual simulations of a large va-
riety of physical systems, gaining a deeper understand-
ing of the underlying concepts and equations. We have
described several examples of commonplace differential
equations in physics, intending to introduce this new
technique to both undergraduate and graduate students
and also teachers. We provide as SM the codes we im-
plemented and used in all the example, to facilitate the
learning and teaching of this exciting method. We hope

8

that our easy-to-understand code for PINNs enable stu-
dents and teachers to experiment with it.

VIII. REFERENCES

[1] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Lau-
rent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-
Maranto, and Lenka Zdeborová. Machine learning and
the physical sciences. Reviews of Modern Physics, 91(4),
Dec 2019.

[2] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neu-
ral networks for solving ordinary and partial differen-
tial equations. IEEE Transactions on Neural Networks,
9(5):987–1000, 1998.

[3] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator net-
works. Proceedings of the 36th International Conference
on Machine Learning, PMLR, 97:3495–3504, 2019.

[4] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang,
and George Em Karniadakis. Learning nonlinear opera-
tors via deeponet based on the universal approximation
theorem of operators. Nat Mach Intell, 3:218–229, 2021.

[5] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang
Yin, and George Em Karniadakis. Physics-informed neu-
ral networks (pinns) for fluid mechanics: A review. Acta
Mechanica Sinica, 37:1727-1738, 2021.

[6] Karan Shah, Patrick Stiller, Nico Hoffmann, and
Attila Cangi. Physics-informed neural networks as

solvers for the time-dependent schrödinger equation
(https://arxiv.org/abs/2210.12522). 2022.

[7] Yuyao Chen, Lu Lu, George Em Karniadakis, and
Luca Dal Negro. Physics-informed neural networks for
inverse problems in nano-optics and metamaterials. Opt.
Express, 28(8):11618–11633, Apr 2020.

[8] Luis Medrano Navarro, Luis Mart́ın Moreno, Sergio G
Rodrigo’. PINNs-for-education. https://github.com/

IrisFDTD/PINNs-for-education, 2023.
[9] Michael A Nielsen. Neural networks and deep learning,

volume 25. Determination press San Francisco, CA, USA,
2015.

[10] Frank Rosenblatt. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

[11] Aurèlien Gèron. Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow. O’Reilly Media, Inc.,
Sebastopol, 2019.

[12] Rumelhart David E., Hinton Geoffrey E., and
Williams Ronald J. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

Supplementary material - Solving differential
equations in physics with Deep Learning: a
beginner’s guide

Luis Medrano Navarro
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de
Zaragoza, 50009 Zaragoza, Spain

E-mail: 780070@unizar.es; ORCID=0000-0003-3246-9383

Luis Martin Moreno
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de
Zaragoza, 50009 Zaragoza, Spain
Departamento de F́ısica de la Materia Condensada, Universidad de Zaragoza,
Zaragoza 50009, Spain

E-mail: lmm@unizar.es; ORCID=0000-0001-9273-8165

Sergio G Rodrigo
Departamento de F́ısica Aplicada, Facultad de Ciencias, Universidad de
Zaragoza, 50009 Zaragoza, Spain
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de
Zaragoza, 50009 Zaragoza, Spain

E-mail: sergut@unizar.es; ORCID=0000-0001-6575-168X

ar
X

iv
:2

30
7.

11
23

7v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
0

Ju
l 2

02
3

2

1 Deep learning PINNs with Tensorflow-Keras 2

2 Example 1: 1st order Ordinary Differential Equations 3
2.1 Main libraries . 3
2.2 Definition of the PINN . 3
2.3 Run the PINN . 4
2.4 Evolution of losses during training . 7
2.5 Solution and its derivatives . 7

3 Example 2: 2nd order linear Ordinary Differential Equations 8
3.1 Main libraries . 9
3.2 Definition of the PINN . 9
3.3 Run the PINN . 10
3.4 Evolution of losses during training . 11
3.5 Solution and its derivatives . 12

4 Example 3: 2nd order non-linear Ordinary Differential Equations 13
4.1 Main libraries . 13
4.2 Definition of the PINN . 13
4.3 Run the PINN . 14
4.4 Evolution of losses during training . 15
4.5 Solution and its derivatives . 16

5 Performance of the PINNs 16

6 References 17

1. Deep learning PINNs with Tensorflow-Keras

In the following, we describe the Python codes that were implemented to conduct
the calculations of the paper. These codes can be found in the following Github
repository [1]. We provide a comprehensive explanation of them, such that it can be
utilized effectively and modified according to one’s requirements. The Supplementary
Material of this paper also includes three Jupyter notebooks, so the reader can practice
with the examples provided and build its own PINNs.

To implement our PINNs, we have used Keras and Tensorflow libraries [?].
Tensorflow consists of a set of programming libraries to operate with tensors. With
Tensorflow, it is possible to implement neural networks (NN) from scratch. However,
being a low-level library, its learning and use are relatively complex. On the other
hand, Keras is a high-level Application Programming Interface (API) where it is easier
to create complex architectures with NN. We have used Keras as the backbone of the
implementation, but it has been necessary to use Tensorflow to generate the Ordinary
Differential Equation (ODE) loss functions described in the paper.

3

2. Example 1: 1st order Ordinary Differential Equations

The first-order ODE to be solved with the use of PINNs is:{
y′(x) + y(x) = 0 with 0 < x < 4
y(0) = 1

(1)

, whose exact solution is y(x) = exp(−x).

2.1. Main libraries

To begin with, we start the loading of essential packages for the algorithm. Primarily,
we load Tensorflow, and in addition, we utilize Numpy for mathematical and array
operations, and Matplotlib for generating plots. We further import from Keras two
types of layers (Input and Dense) and the Adam optimizer.

Tensorflow Keras and the rest of the packages

import tensorflow as tf

from tensorflow.keras.layers import Input ,Dense

from tensorflow.keras.optimizers import Adam

import numpy as np

import matplotlib.pyplot as plt

2.2. Definition of the PINN

The next lines of code can be considered the core of the PINN algorithm. In there we
create the loss function in Tensorflow using the differential equation information.

The Python code defines a custom Keras model class ODE 1st that inherits from
the tf.keras.Model class. The train step method of this class implements the training
loop for the model (see Ref. [3], for an introductory description of custom objects
using Tensorflow-Keras). Inside the train step method, the data argument is a tuple
that contains the training inputs x and the analytical (exact) solution y exact at these
input points.

The word self in this code means model. So, for example, self(x0, training =
True) calculates the model’s prediction at the point of the initial condition x0. This
is why the result is y0 NN in the corresponding line of code, the prediction of the NN
at this point.

Let’s describe the different parts of the Python code:

(i) The method starts by defining the initial conditions for the PINN, as x0 and
y0 exact, which are set as constant tensors. It is mandatory that all variables
defined throughout the code are in the Tensorflow format.

(ii) The code then computes the gradients of the output y NN with respect to
the input x and the initial condition y0 NN, using two nested tf.GradientTape
contexts. The tf.GradientTape is the part of Tensorflow dedicated to Automatic
Differentiation (AD). This is a very efficient way of calculating derivatives using
NN, allowing the NN to solve differential equations. In particular, Tensorflow
uses what is called reverse AD, based on the mathematical properties of dual
numbers [3].

(iii) The loss function is then calculated using the computed gradients, and
the initial conditions are included in the loss calculation. The loss
is a sum of two contributions of self.compiled−loss, which in our

4

case is the Mean Squared Error (MSE) function, described in the ar-
ticle. The line self.compiled−loss(dy−dx−NN,−y−NN) returns the er-
ror in the differential equation (|y′ + y|2). The code line calling to
self.compiled−loss(y0−NN, y0−exact) is the error in the initial condition
(|y(0)− 1|2).

(iv) Finally, the gradients of the loss function with respect to the trainable weights of
the model are then computed using the top level tf.GradientTape, and the Adam
optimizer is used to update the weights and biases based on these gradients.
Finally, the model metrics (loss and MSE) are updated, and the method returns
a dictionary of the updated metrics.

class ODE_1st(tf.keras.Model):

def train_step(self , data):

Training points

#and the analytical (exact) solution at these points

x, y_exact = data

Initial conditions for the PINN

x0=tf.constant([0.0], dtype=tf.float32)

y0_exact=tf.constant([1.0], dtype=tf.float32)

Calculate the gradients and update weights and bias

with tf.GradientTape () as tape:

Calculate the gradients dy/dx

with tf.GradientTape () as tape2:

tape2.watch(x0)

tape2.watch(x)

y0_NN = self(x0, training=True)

y_NN = self(x, training=True)

dy_dx_NN= tape2.gradient(y_NN ,x)

#Loss= ODE+ boundary/initial conditions

loss=self.compiled_loss(dy_dx_NN , -y_NN)\

+self.compiled_loss(y0_NN ,y0_exact)

gradients = tape.gradient(loss , self.trainable_weights)

self.optimizer.apply_gradients(zip(gradients , self.

trainable_weights))

self.compiled_metrics.update_state(y_exact , y_NN)

return {m.name: m.result () for m in self.metrics}

2.3. Run the PINN

The code of this section defines and trains the NN model to solve the differential
equation using the PINN approach. Here’s what the code does:

(i) n train, xmin, and xmax define the number of training points and the range of
the input values.

(ii) x train is a 1D NumPy array of size n train containing equally spaced input values
between xmin and xmax. x0 is the initial condition for the PINN, which is set to
0.0. The first element of x train is replaced by x0.

(iii) y train is a 1D tensor of size n train containing the true solution to the differential
equation at the corresponding input values in x train. The true solution is
computed using the tf.exp function in this example.

(iv) The NN model is defined with an input layer, three hidden layers with 50 neurons
each, and an output layer with a single output neuron. Note that the activation
function of all neurons is elu, except for the last one, which does not apply any
activation function (activation=None).

5

(v) The model is compiled using: i) MSE as the loss function (here is “written” the
ODE and its initial conditions through the custom Keras model class ODE 1st,
as defined in the previous section); ii) the Adam optimizer with a learning rate
of 0.001; and iii) the MSE metrics (distance between yNN and yexact).

(vi) The model.fit method is used to train the model for 50 epochs, with a batch size of
1, using x train as inputs. Note that y train is used only to estimate the accuracy
of the predicted solution, and it has not been used in the training process (PINNs
make not use of external data to work). Therefore, this requires to know the
analytical solution beforehand.

(vii) Finally, the history object returned by model.fit contains information about the
training progress, such as the total loss and metric values at each epoch.

n_train = 20

xmin = 0

xmax = 4

Definition of the function domain

x_train=np.linspace(xmin ,xmax ,n_train)

The real solution y(x) for training evaluation

y_train=tf.exp(-x_train)

Input and output neurons (from the data)

input_neurons = 1

output_neurons = 1

Hiperparameters

epochs = 40

Definition of the the model

activation=’elu’

input=Input(shape=(input_neurons ,))

x=Dense(50, activation=activation)(input)

x=Dense(50, activation=activation)(x)

x=Dense(50, activation=activation)(x)

output = Dense(output_neurons ,activation=None)(x)

model=ODE_1st(input ,output)

Definition of the metrics , optimizer and loss

loss= tf.keras.losses.MeanSquaredError ()

metrics=tf.keras.metrics.MeanSquaredError ()

optimizer= Adam(learning_rate=0.001)

model.compile(loss=loss ,

optimizer=optimizer ,

metrics=[metrics])

model.summary ()

history=model.fit(x_train , y_train ,batch_size=1,epochs=epochs)

6

The table 1 summarized the hyperparameters used with this PINN.

Parameter Value

interval (0,4)
n train 20
n hidden layers 3
n neurons/layer 1,50,50,50,1
epochs 50
activation elu
optimizer adam
learning rate 0,001

Table 1: Hyperparameters of the PINN to solve equation (1).

Figure 1 provides an overview of the neural network architecture, which consists
of 5251 trainable parameters. The shape of the outputs from each layer and their
corresponding trainable parameters are also presented in the image. The image was
generated with the model.summary() method of Keras.

Figure 1: Keras-Tensorflow model of the PINN as given by the model.summary()
method of Keras.

7

2.4. Evolution of losses during training

Using the code below, the evolution of metrics as a function of the number of epochs
can be obtained graphically.

summarize history for loss and metris

plt.rcParams[’figure.dpi’] = 150

plt.plot(history.history[’loss’],color=’magenta ’,

label=’Total losses ($L_D + L_B$)’)
plt.plot(history.history[’mean_squared_error ’],color=’cyan’,label=’MSE’)

plt.yscale("log")

plt.xlabel(’epochs ’)

plt.legend(loc=’upper right’)

plt.show()

Figure 2: Training evolution as a function of the number of epochs. Two indicators
of the performance of the NN are plotted: the total loss (LD + LB) and the MSE.
The last measures the distance per point between yanalytic and yNN , evaluated at the
training points.

2.5. Solution and its derivatives

TensorFlow allows the AD of any function y(x), making it possible to calculate all of
its derivatives. Since yNN (x) is simply a function, we can straightforwardly obtain
them using this feature.

In the code, we define a set of validation points. Points not previously seen by
the NN during training. The exact (analytical) values of y(x) are also obtained.

The two first derivatives are obtained with the help of two tf.GradientTape
environments. These lines of the code look like the ones used in the Definition of
the PINN (Section 2.2).

Check the PINN at different points not included in the training set

n = 500

x=np.linspace(0,4,n)

y_exact=tf.exp(-x)

8

y_NN=model.predict(x)

The gradients (y ’(x) and y ’’(x)) from the model

x_tf = tf.convert_to_tensor(x, dtype=tf.float32)

with tf.GradientTape(persistent=True) as t:

t.watch(x_tf)

with tf.GradientTape(persistent=True) as t2:

t2.watch(x_tf)

y = model(x_tf)

dy_dx_NN = t2.gradient(y, x_tf)

d2y_dx2_NN = t.gradient(dy_dx_NN , x_tf)

Plot the results

plt.rcParams[’figure.dpi’] = 150

plt.plot(x, y_exact , color="black",linestyle=’solid ’,

linewidth=2.5,label="$y(x)$ analytical")

plt.plot(x, y_NN , color="red",linestyle=’dashed ’,

linewidth=2.5, label="$y_{NN}(x)$")
plt.plot(x, dy_dx_NN , color="blue",linestyle=’-.’,

linewidth=3.0, label="$y’_{NN}(x)$")
plt.plot(x, d2y_dx2_NN , color="green", linestyle=’dotted ’,

linewidth=3.0, label="$y’’_{NN}(x)$")
plt.legend ()

plt.xlabel("x")

plt.show()

Figure 3: The analytical solution and the prediction for y(x) and its derivatives as
a function of x. The results are obtained from previously unseen points inside and
outside the training interval, which were utilized as validation data for the PINN.

3. Example 2: 2nd order linear Ordinary Differential Equations

Here we solve the second example described in the paper, the solution to the harmonic
oscillator problem using PINNs:{

y′′(x) + y(x) = 0 with 0 ⩽ x ⩽ 8
y(0) = 1, y′(0) = 0

(2)

9

, whose analytic solution is y(x) = cos(x).
The codes for the 2nd-order ODE examples are analog to the example of the

previous section. However, we need to pay special attention to the definition of the
total loss.

3.1. Main libraries

We use here the same list of libraries that in the first example.

Tensorflow Keras and the rest of the packages

import tensorflow as tf

from tensorflow.keras.layers import Dense ,Input

from tensorflow.keras.optimizers import Adam

import numpy as np

import matplotlib.pyplot as plt

3.2. Definition of the PINN

As in the previous case, this is the most technical step in the code where the loss is
defined, so it incorporates the differential equation.

We have introduced several significant changes to our approach. Firstly, we
utilized an extra tf.GradientTape to calculate the second-order derivative required
to define the loss. Additionally, we incorporated a new term to account for the
initial velocity condition, and we made modifications to the differential equation term.
Specifically, we are now solving for y′′ + y = 0, and as a result, we are utilizing
self.compiled−loss(d2y−dx2,−y) in our computations.

class ODE_2nd(tf.keras.Model):

def train_step(self , data):

Training points and the analytical

(exact) solution at this points

x, y_exact = data

#Change initial conditions for the PINN

x0=tf.constant([0.0], dtype=tf.float32)

y0_exact=tf.constant([1.0], dtype=tf.float32)

dy_dx0_exact=tf.constant([0.0], dtype=tf.float32)

Calculate the gradients and update weights and bias

with tf.GradientTape () as tape:

tape.watch(x)

tape.watch(y_exact)

tape.watch(x0)

tape.watch(y0_exact)

tape.watch(dy_dx0_exact)

Calculate the gradients dy2/dx2 , dy/dx

with tf.GradientTape () as tape0:

tape0.watch(x0)

y0_NN = self(x0,training=False)

tape0.watch(y0_NN)

dy_dx0_NN = tape0.gradient(y0_NN , x0)

with tf.GradientTape () as tape1:

tape1.watch(x)

with tf.GradientTape () as tape2:

tape2.watch(x)

y_NN = self(x,training=False)

tape2.watch(y_NN)

dy_dx_NN = tape2.gradient(y_NN , x)

tape1.watch(y_NN)

10

tape1.watch(dy_dx_NN)

d2y_dx2_NN = tape1.gradient(dy_dx_NN , x)

tape.watch(y_NN)

tape.watch(dy_dx_NN)

tape.watch(d2y_dx2_NN)

#Loss= ODE+ boundary/initial conditions

y0_exact=tf.reshape(y0_exact ,shape=y_NN[0].shape)

dy_dx0_exact=tf.reshape(dy_dx0_exact ,shape=dy_dx0_NN.shape)

loss= self.compiled_loss(y0_NN ,y0_exact)\

+self.compiled_loss(d2y_dx2_NN ,-y_NN)\

+self.compiled_loss(dy_dx0_NN ,dy_dx0_exact)

gradients = tape.gradient(loss , self.trainable_weights)

self.optimizer.apply_gradients(zip(gradients , self.

trainable_weights))

self.compiled_metrics.update_state(y_exact , y_NN)

return {m.name: m.result () for m in self.metrics}

3.3. Run the PINN

We used in solving the 2nd-order ODE an specific callback of Keras, which stops the
training if there is no improvement and saves the NN’s configuration with the lowest
loss.

Here, we also introduced a different initializer of the weights and biases called
GlorotUniform. There are many initializers, and part of improving the NN predictions
consists of finding the best initializer in each case.

n_train = 18

xmin = 0.0

xmax = 8.0

Definition of the function domain

x_train=np.linspace(xmin ,xmax ,n_train)

The solution y(x) for training and validation datasets

y_train=np.cos(x_train)

Input and output neurons (from the data)

input_neurons = 1

output_neurons = 1

Hiperparameters

epochs = 500

Definition of the the model

initializer = tf.keras.initializers.GlorotUniform(seed=5)

activation=’tanh’

input=Input(shape=(input_neurons ,))

x=Dense(50, activation=activation ,

kernel_initializer=initializer)(input)

x=Dense(50, activation=activation ,

kernel_initializer=initializer)(x)

x=Dense(50, activation=activation ,

kernel_initializer=initializer)(x)

output = Dense(output_neurons ,

activation=None ,

kernel_initializer=initializer)(x)

11

model=ODE_2nd(input ,output)

Definition of the metrics , optimizer and loss

loss= tf.keras.losses.MeanSquaredError ()

metrics=tf.keras.metrics.MeanSquaredError ()

optimizer= Adam(learning_rate=0.001)

model.compile(loss=loss ,

optimizer=optimizer ,

metrics=[metrics])

model.summary ()

Just use ‘fit ‘ as usual

callback = tf.keras.callbacks.EarlyStopping(monitor=’loss’,

patience=1000 ,

restore_best_weights=True)

history=model.fit(x_train , y_train ,batch_size=1, epochs=epochs ,

callbacks=callback)

The hyperparameters for the 2nd-order ODE are summarized in Table 2, with
slight modifications compared to the previous example.

Parameter Value

interval (0,8)
n train 18
n hidden layers 3
n neurons/layer 1,50,50,50,1
epochs 500
activation tanh
optimizer adam
learning rate 0,001

Table 2: Hyperparameters of the PINN to solve equation (2).

3.4. Evolution of losses during training

A comparable evolution, similar to the one depicted in the article in Fig. 3, can be
observed by utilizing the same code as presented in Section 2.4.

12

Figure 4: Evolution of losses during training, as a function of the number of epochs.

3.5. Solution and its derivatives

Using the code of Section 2.5, results like those shown in the paper in Fig. 3 can be
obtained. It is important to note that the exact solution for the 2n-order ODE must
be employed in this case, which is:

y_exact=tf.cos(-x)

Figure 5: The analytical solution and the prediction for y(x) and its derivatives as a
function of x.

13

4. Example 3: 2nd order non-linear Ordinary Differential Equations

Finally, we describe the Python code to solve the 2nd-order nonlinear ODE used as
an example in the article.

{
y′′(x)− y(x)− 3y2(x) = 0

y(0) = −1/2, y′(0) = 0
(3)

, being its analytical solution y(x) = − 1
2 · sech2(x2).

4.1. Main libraries

These are the same packages as those used in the previous examples.

Tensorflow Keras and rest of the packages

import tensorflow as tf

from tensorflow.keras.layers import Dense ,Input

from tensorflow.keras.optimizers import Adam

import numpy as np

import matplotlib.pyplot as plt

4.2. Definition of the PINN

As in the previous case, this is the most technical step in the code where the loss is
defined, so it incorporates the differential equation.

class ODE_2nd(tf.keras.Model):

def train_step(self , data):

Training points and the analytical

(exact) solution at this points

x, y_exact = data

#Change initial conditions for the PINN

x0=tf.constant([0.0], dtype=tf.float32)

y0_exact=tf.constant([-0.5], dtype=tf.float32)

dy_dx0_exact=tf.constant([0.0], dtype=tf.float32)

C=tf.constant([1.0], dtype=tf.float32)

Calculate the gradients and update weights and bias

with tf.GradientTape () as tape:

tape.watch(x)

tape.watch(y_exact)

tape.watch(x0)

tape.watch(y0_exact)

tape.watch(dy_dx0_exact)

Calculate the gradients dy2/dx2 , dy/dx

with tf.GradientTape () as tape0:

tape0.watch(x0)

y0_NN = self(x0,training=False)

tape0.watch(y0_NN)

dy_dx0_NN = tape0.gradient(y0_NN , x0)

with tf.GradientTape () as tape1:

tape1.watch(x)

with tf.GradientTape () as tape2:

tape2.watch(x)

y_NN = self(x,training=False)

tape2.watch(y_NN)

dy_dx_NN = tape2.gradient(y_NN , x)

tape1.watch(y_NN)

tape1.watch(dy_dx_NN)

d2y_dx2_NN = tape1.gradient(dy_dx_NN , x)

14

tape.watch(y_NN)

tape.watch(dy_dx_NN)

tape.watch(d2y_dx2_NN)

#Loss= ODE+ boundary/initial conditions

y0_exact=tf.reshape(y0_exact ,shape=y_NN[0].shape)

dy_dx0_exact=tf.reshape(dy_dx0_exact ,shape=dy_dx0_NN.shape)

C=tf.reshape(C,shape=d2y_dx2_NN.shape)

loss= self.compiled_loss(y0_NN ,y0_exact)\

+self.compiled_loss(dy_dx0_NN ,dy_dx0_exact)\

+self.compiled_loss(d2y_dx2_NN ,C*y_NN+3.0*y_NN **2)

gradients = tape.gradient(loss , self.trainable_weights)

self.optimizer.apply_gradients(zip(gradients , self.

trainable_weights))

self.compiled_metrics.update_state(y_exact , y_NN)

return {m.name: m.result () for m in self.metrics}

4.3. Run the PINN

Regarding the solution found for the 2nd-order ODE, the number of epochs increases
because the learning rate is reduced. This example, however, is not so sensitive to the
initial values of weights and biases, so we removed the GlorotUniform initializer.

n_train = 11

xmin = -5

xmax = 5

Definition of the function domain

x_train=np.linspace(xmin ,xmax ,n_train)

The solution y(x) for training and validation datasets

x0=0.0

y_train=-0.5*1.0*(1.0/np.cosh(0.5*np.sqrt(1.0)*(x_train-x0)))** 2

Input and output neurons (from the data)

input_neurons = 1

output_neurons = 1

Hiperparameters

epochs = 2000

Definition of the model

activation=’tanh’

input=Input(shape=(input_neurons ,))

x=Dense(50, activation=activation)(input)

x=Dense(50, activation=activation)(x)

x=Dense(50, activation=activation)(x)

output = Dense(output_neurons ,activation=None)(x)

model=ODE_2nd(input ,output)

Definition of the metrics , optimizer and loss

loss=tf.keras.losses.MeanSquaredError ()

metrics=tf.keras.metrics.MeanSquaredError ()

optimizer= Adam(learning_rate=0.0001)

model.compile(loss=loss ,

optimizer=optimizer ,

metrics=[metrics])

15

model.summary ()

Just use ‘fit ‘ as usual

callback = tf.keras.callbacks.EarlyStopping(monitor=’loss’,

patience=1000 ,

restore_best_weights=True)

history=model.fit(x_train , y_train , batch_size=1, epochs=epochs ,

callbacks=callback)

Table 3 sums up the hyperparameters for this ODE.

Parameter Value

interval (-5,5)
n train 11
n hidden layers 3
n neurons/layer 1,50,50,50,1
epochs 2000
activation tanh
optimizer adam
learning rate 0,0001

Table 3: Hyperparameters of the PINN to solve equation (3).

4.4. Evolution of losses during training

A comparable evolution, similar to the one depicted in the article in Fig. 3, can be
observed by utilizing the same code as presented in Section 2.4.

Figure 6: Training evolution as a function of the number of epochs.

16

4.5. Solution and its derivatives

To obtain comparable results to those presented in Fig. 3 of the article, one can use
the code from Section2.5. However, it is necessary to include the exact solution of the
2nd-order nonlinear ODE:

x0=0.0

y=-0.5*1.0*(1.0/np.cosh(0.5*np.sqrt(1.0)*(x-x0))) **2

Figure 7: The analytical solution and the prediction for y(x) and its derivatives as a
function of x.

5. Performance of the PINNs

We conducted 100 simulations for each example, enforcing a total loss threshold of
1.0 · 10−4 for Examples 1 and 2 and 1.0 · 10−5 for Example 3.

The numerical experiments are presented in Figure 8, which indicate that, on
average, the threshold is reached after 42, 326, and 1422 epochs. However, it’s worth
noting that the distributions are non-normal, and a more insightful analysis requires
the use of median and mode statistics, where the median represents the middle value
of the dataset. The mode defines the most common value. For instance, the median
and mode for the Example 1 are 40 and 39 epochs. For the Example 2 we have 317 and
312. Finally, for the Example 3, the median and mode are 1256 and 1225 respectively.

17

(a) (b) (c)

mean= 1422.34
sigma= 623.
mode=array([1225])
median= 1256.5

mean= 326.6
sigma= 35.66
mode=array([312])
median= 317.0

mean= 42.28
sigma= 9.29
mode=array([39])
median= 40.0

Figure 8: The histograms display the distribution of the number of trained models
that achieved the convergence threshold within a specific number of epochs. This data
was obtained for: (a) the 1st-order ODE studied, corresponding to the exponential
decay solution; (b) the 2nd-order ODE (harmonic oscillator); and (c) the 2nd-order
nonlinear ODE (Korteweg-de Vries equation).

6. References

[1] Luis Medrano Navarro, Luis Mart́ın Moreno, Sergio G Rodrigo’. PINNs-for-education. https:

//github.com/IrisFDTD/PINNs-for-education, 2023.
[2] Francois Chollet. Deep learning with python. Manning Publications. New York, 2017.
[3] Aurèlien Gèron. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.

O’Reilly Media, Inc., Sebastopol, 2019.

